-->

От водорода до ?

На нашем литературном портале можно бесплатно читать книгу От водорода до ?, Таубе Петр Рейнгольдович-- . Жанр: Химия. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
От водорода до ?
Название: От водорода до ?
Дата добавления: 16 январь 2020
Количество просмотров: 325
Читать онлайн

От водорода до ? читать книгу онлайн

От водорода до ? - читать бесплатно онлайн , автор Таубе Петр Рейнгольдович

Издание представляет собой сборник рассказов о химических элементах, т. е. о видах атомов, из которых построены звезды и Солнце, Луна и планеты, земля, вода, воздух, растения, животные и мы сами.

Это рассказы о тех химических элементах, которые занимают определенное место в периодической системе, созданной великим химиком Дмитрием Ивановичем Менделеевым. В этой естественной системе место, занимаемое тем или иным элементом, позволяет определить не только его химические и физические свойства, но также состав и свойства соединений, образуемых им с другими элементами. Рассказам об элементах предшествует вступление. В нем кратко дана история развития взглядов на материю, из которой построены тела природы.

Авторы стремились сделать каждый рассказ по возможности самостоятельным, законченным. Книга может быть особенно полезной при изучении общего курса химии учащимися старших классов средних школ и студентами вузов, где химия не является ведущей специальностью.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 53 54 55 56 57 58 59 60 61 ... 78 ВПЕРЕД
Перейти на страницу:

Замечательно, что для прометия, так пока и не обнаруженного на Земле, «создано» большое число (14) радиоизотопов, хотя большинство из них недолговечны. Однако изотоп прометия с массовым числом 147 является сравнительно «долгоживущим» (период полураспада 2,7 года) радиоактивным ОВ, образующимся при взрыве атомной бомбы. Любопытно, что этот радиоизотоп сулит стать в практическом отношении одним из наиболее перспективных радиоизотопов всей лантанидной группы элементов.

В атомной батарейке на прометии энергия бета-распада радиоизотопа превращается сначала в световую, а затем в электрическую. Источником света в такой батарейке является тонко измельченная смесь фосфора с окисью прометия-147 (количество последней не превышает 7 мг). Энергия бета-частиц, воспринимаясь фосфором, превращается в энергию инфракрасного излучения, которое, улавливаясь кремниевым фотоэлементом, превращается в электрический ток. Мощность такой прометиевой батарейки достигает 20 мкв при напряжении около одного вольта.

Внешне батарейка имеет вид диска, не превышающего размерами шляпку … канцелярской кнопки! Исключительная миниатюрность батарейки, безотказность ее работы на протяжении ряда лет (до 5), независимость от внешних факторов (температура, давление и т. д.) безгранично расширяют область практического применения прометиевых батарей. Портативные приемники и многообразная аппаратура, начиная с управляемых на расстоянии тяжелых механизмов и кончая миниатюрными слуховыми «трубками» для тугоухих, — вот диапазон, в котором находит применение атомная батарейка на прометии-147.

Естественный прометий в природе не найден! И тем не менее блестящие успехи ядерной физики вновь ставят на повестку дня вопрос о нахождении его в природе.

Теория показывает, что в результате самопроизвольного деления урана образуется прометий-147 в количестве 10–15 г на каждые 100 г урана. Таким образом, урановые руды являются местом, где может находиться естественный прометий.

Возможно образование прометия в природе в качестве продукта радиоактивного распада самария и изотопов неодима — элементов, являющихся ближайшими соседями прометия в периодической системе Д. И. Менделеева. Этот путь образования прометия учеными доказан: прометий-150 получается в результате бета-распада неодима-150. Правда, он недолговечен (период полураспада 2,7 часа) и время, необходимое на выделение его из примесей, достаточно для полного его исчезновения.

Поиски «неуловимого» продолжаются, и очевидно, в ближайшем будущем прометий будет найден на Земле.

Слово знакомого звучания

62. Самарий — Samarium (Sm)

В этом названии слух улавливает что-то знакомое. Самара! Старое название «столицы волжской крупчатки». Название города на Волге, с которым связаны жизнь и деятельность В. И. Ленина, А. М. Горького и В. В. Куйбышева. В Самаре В. И. Ленин перевел на русский язык «Манифест Коммунистической партии». В Самаре А. М. Горький написал более 30 художественных произведений, в числе которых всем известная «Песня о Соколе». В Самаре под руководством В. В. Куйбышева трудящиеся в дни Великого Октября провозгласили Советскую власть. В честь В. В. Куйбышева, по желанию трудящихся, Самара была переименована в город Куйбышев. К сожалению, не в честь этого славного советского города — центра богатейших нефтяных месторождений, района крупнейшей в мире гидроэлектростанции — назван элемент из семейства лантанидов. История происхождения названия элемента исключительна по своей неожиданности.

В середине прошлого столетия на Алтае и Урале подвизался смотритель горного округа, инженер В. Е. Самарский. Талантами он не отличался, рабочих притеснял, жестоких наказаний не гнушался. Однажды рабочие принесли ему найденный в Ильменских горах неизвестный минерал очень красивого бархатно-черного цвета. Присутствовавший при этом угодливый чиновник предложил назвать минерал самарскитом. Минерал поместили в коллекцию под этим названием. В 1879 г. минерал попал в руки французского химика Лекок-де-Буабодрана. Он нашел в минерале новый элемент и назвал его по имени минерала самарием. Так случайно было увековечено имя Самарского. Сколько в этом несправедливости! Если уж называть элемент именем человека, открывшего минерал, то нужно найти подлинного первооткрывателя-труженика.

В своих соединениях самарий — двухвалентный металл. У него проявлена, правда чрезвычайно слабо, радиоактивность. Он излучает альфа-частицы, переходя в неодим. Из химических элементов с порядковыми номерами до 83 только у самария наблюдается природная альфа-радиоактивность. Источник получения самария — редкоземельные минералы, в которых самарий находится совместно с другими элементами цериевой группы.

Исследованиями последних лет установлено, что в некоторых районах самарий содержится в гранитах, к тому же в заметных количествах. В среднем каждая тонна гранита содержит 17,3 г самария.

Стекло, содержащее окись самария, поглощает нейтроны. Уже одно это делает самарий ценнейшим материалом атомной техники (прозрачные блоки в защите атомного реактора).

Соединения самария применяются в качестве добавки (активатора) к материалу люминофоров, — дающих одиночные вспышки. На грамм основного материала добавляют от одной тысячной до одной стотысячной доли грамма активатора. Подобные люминофоры используются при исследованиях инфракрасного излучения в астрономии, для обнаружения вредного радиоактивного излучения в ядерных лабораториях и т. д. В некоторых случаях все устройство имеет вид перстня.

Не исключается возможность применения самария и его сплавов для изготовления регулирующих стержней в ядерных реакторах.

Как известно, управление ядерным котлом (реактором) осуществляется с помощью стержней из кадмия или бористой стали (кадмий и бор жадно поглощают нейтроны). Такие стержни, находясь в реакторе, поглощают нейтроны, уменьшая число делений атомов урана. Изменяя глубину погружения поглощающего стержня в реактор, можно регулировать работу атомного котла.

Величина поглощения нейтронов каким-либо материалом определяется так называемым поперечным сечением радиационного захвата. Под ним понимают сечение сферы, описанной вокруг ядра, попав в которую, нейтрон может быть захвачен. Таким образом, ядру приписывается эффективная площадь мишени. Площадь сечения, равную 1 · 10–24 см2, называют «барн», очевидно, чем она больше, тем выше способность к захвату нейтронов. У самария величина поперечного захвата составляет 6500 барн и превосходит значения ее для кадмия (2500 барн) и бора (3000 барн).

Легчайший из лантанидов

63. Европий — Europium (Eu)

Даже в словарях последнего выпуска об элементе «европий» сказано более чем кратко: «см. редкоземельные элементы». Европий к моменту издания энциклопедического словаря (1955 г.) еще не «заслуживал права» даже на несколько строк. В справочниках пишут кратко: открыт химиком Дэмерсэ в 1901 г., температура плавления 1150 °C, трудно отделяется от лантанидов.

Большинство химиков никогда не видели соединений европия. Его в земной коре в 70 раз больше, чем серебра, и в 1000 раз больше золота. Добавим для характеристики европия следующее: обычная валентность — три, но в некоторых соединениях бывает и двухвалентным. Соли окрашены в розоватый цвет. Выделить эти соли в чистом виде из смеси с солями других редкоземельных удалось лишь после длительной и хлопотливой работы в 1940 г.

Только этим можно объяснить, что в 1952 г. 1 кг окиси европия чистотой 98–99 % стоил в США 300 тысяч долларов, причем окись европия продавалась партиями по … 5 г.

Европий — самый легкий из лантанидов. Его плотность составляет 5,166 г/см3, т. е. почти в полтора раза меньше железа. В последние годы радиоактивный изотоп — европий-155 (период полураспада 1 год 250 суток) благодаря наличию гамма-излучений используется в целях медицинской диагностики и дефектоскопии. Легкие и портативные рентгенопросвечивающие аппараты, созданные на основе радиоактивного изотопа европия, оказались очень удобными для проверки качества тонкостенных металлических деталей. Просвечивание гамма-лучами европия стальных изделий при толщине стенок до 15–20 мм, а также изделий из титановых сплавов до 30–40 мм и алюминиевых — до 50–60 мм показывает, что европиевая гамма-дефектоскопия обладает в 2–4 раза более высокой чувствительностью в сравнении с широко используемыми радиоизотопами цезия и кобальта.

1 ... 53 54 55 56 57 58 59 60 61 ... 78 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название