Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее

На нашем литературном портале можно бесплатно читать книгу Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее, Коллектив авторов-- . Жанр: Химия / Справочники. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее
Название: Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее
Дата добавления: 15 январь 2020
Количество просмотров: 283
Читать онлайн

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее читать книгу онлайн

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее - читать бесплатно онлайн , автор Коллектив авторов

«Популярная библиотека химических элементов» содержит сведения обо всех элементах, известных человечеству. Сегодня их 107, причем некоторые получены искусственно.

Как неодинаковы свойства каждого из «кирпичей мироздания», так же неодинаковы их истории и судьбы. Одни элементы, такие, как медь, железо, сера, углерод, известны с доисторических времен. Возраст других измеряется только веками, несмотря на то, что ими, еще не открытыми, человечество пользовалось в незапамятные времена. Достаточно вспомнить о кислороде, открытом лишь в XVIII веке. Третьи открыты 100 — 200 лет назад, но лишь в паше время приобрели первостепенную важность. Это уран, алюминий, бор, литий, бериллий. У четвертых, таких, как, например, европий и скандий, рабочая биография только начинается. Пятые получены искусственно методами ядерно-физического синтеза: технеций, плутоний, менделевий, курчатовий… Словом, сколько элементов, столько индивидуальностей, столько историй, столько неповторимых сочетаний свойств.

В первую книгу вошли материалы о 46 первых, по порядку атомных номеров, элементах, во вторую — обо всех остальных.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 31 32 33 34 35 36 37 38 39 ... 133 ВПЕРЕД
Перейти на страницу:

Всего один дополнительный электрон появился в атоме гадолиния по сравнению с атомом предыдущего элемента, европия. Он, этот добавочный электрон, попал на вторую снаружи оболочку, а первые пять электронных «слоев», в том числе и развивающаяся у большинства лантаноидов оболочка у атомов европия и гадолиния построены одинаково. Всего один электрон и один протон в ядре, но как преображают они некоторые свойства очередного лантаноида!

Прежде всего, гадолинию свойственно наивысшее среди всех элементов сечение захвата тепловых нейтронов: 46 тыс. барн — такова эта величина для природной смеси изотопов гадолиния. А у гадолиния-157 (его доля в природной смеси — 15,68%) сечение захвата превышает 150 тыс. барн. Это «рекордсмен» среди всех стабильных изотопов.

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее - i_052.png

Профессор химии швейцарский ученый Жан Шарль Галиссар де Mариньяк (1817–1894) был видным теоретиком и экспериментатором. Он занимался определением и уточнением атомных весов и реакционной способности элементов, исследовал озон, вольфрамовую кислоту, производные нафталина… Наибольшую известность Мариньяку принесло открытие в 1880 г. нового редкоземельного элемента гадолиния. На правом рисунке — почтовая марка, выпущенная в Финляндии в 1960 г. в честь 200-летия со дня рождения одного из первых исследователей редких земель Юхана (Иоганна) Гадолина. В ее левом нижнем углу воспроизведена клетка элемента № 64 в таблице Менделеева 

Столь большое сечение захвата дает возможность применять гадолиний при управлении цепной ядерной реакцией и для защиты от нейтронов. Правда, активно захватывающие нейтроны изотопы гадолиния (157Gd и 155Gd) в реакторах довольно быстро «выгорают» — превращаются в «соседние» ядра, у которых сечение захвата на много порядков меньше. Поэтому в конструкциях регулирующих стержней с гадолинием могут конкурировать другие редкоземельные элементы, прежде всего самарий и европий.

Тем не менее еще в начале 60-х годов управляющие стержни для некоторых атомных реакторов в CШA начали делать из нержавеющей стали с присадками гадолиния. Видимо, это давало какие-то технические пли экономические преимущества.

Элементу № 64 свойственно не только высокое сечение захвата, но и хорошая совместимость с другими компонентами черных металлов. Поэтому в них можно, не утрачивая однородности, вводить до 30% гадолиния.

Столь же однородны сплавы гадолиния с титаном (до 20% Gd). Церий же, к примеру, растворяется в титане в 40 раз хуже. А редкоземельные металлы хорошо легируют сплавы не только на магниевой, но и на титановой основе. Улучшать свойства титана (когда это нужно — они и так достаточно хороши) приходится именно гадолинием. Пятипроцентная добавка элемента № 64 заметно повышает прочность и предел текучести сплавов на титановой основе.

Выходит, что не только рекордными сечениями захвата знаменит гадолиний!

А еще у него максимальное по сравнению со всеми другими лантаноидами удельное электрическое сопротивление — примерно вдвое больше, чем у его аналогов. И удельная теплоемкость гадолиния на 20% (при 25°C) превышает удельную теплоемкость лантана и церия. Наконец, магнитные свойства ставят элемент № 64 в один ряд с железом, кобальтом и никелем. В обычных условиях, когда лантан и другие лантаноиды парамагнитны, гадолиний — ферромагнетик, причем даже более сильный, чем никель и кобальт. Но железо и кобальт сохраняют ферромагнитность и при температуре порядка 1000 К, никель — 631 К. Гадолиний же теряет это свойство, будучи нагрет всего до 290 К (17°C).

Необычны магнитные свойства и у некоторых соединений гадолиния. Его сульфат и хлорид (гадолиний, кстати, всегда трехвалентен), размагничиваясь, заметно охлаждаются. Это свойство использовали для получения сверхнизкой температуры. Сначала соль Gd2(SO4)3∙8H2O помещают в магнитное поле и охлаждают до предельно возможной температуры. А затем дают ей размагнититься. При этом запас энергии, которой обладала соль, еще уменьшается, и в конце опыта температура кристаллов отличается от абсолютного нуля всего на одну тысячную градуса.

В области сверхнизких температур открыто еще одно применение элемента № 64. Сплав гадолиния с церием и рутением в этих условиях приобретает сверхпроводимость и в то же время обнаруживает слабый ферромагнетизм. Таким образом, для магнетохимии представляют непреходящий интерес и сам гадолиний, и его соединения, и сплавы. Другой сплав гадолиния — с титаном применяют в качестве активатора в стартерах люминесцентных ламп. Этот сплав впервые получен в нашей стране.

Несколько слов о других практически важных соединениях элемента № 64. Окись гадолиния Gd2O3 используют как один из компонентов железо-иттриевых ферритов. Люминофоры с оксисульфидом гадолиния позволяют получать наиболее контрастные рентгеновские снимки. Молибдат гадолиния — компонент галлий-гадолиниевых гранатов. Эти материалы представляют большой интерес для оптоэлектроники. А селенид гадолиния Gd2S3 обладает полупроводниковыми свойствами.

Вероятно, заканчивая, следует указать общее число известных сейчас изотопов гадолиния. Все-таки сегодняшнему читателю он интересен прежде всего как «атомный» элемент.

Известно 20 изотопов элемента № 64 с массовыми числами от 143 до 162. Стабильных из них шесть — с массовыми числами 154, 155, 156, 157, 158 и 160, а природных — семь, та же шестерка плюс слабо излучающий альфа- частицы гадолиний-152. Доля его в природной смеси изотопов невелика — 0,2%, а период полураспада, напротив, весьма протяжен — 1014 лет.

Из радиоактивных изотопов гадолиния интерес для науки представляют прежде всего гадолиний-153 с периодом полураспада 236 суток, причем распадается он путем электронного захвата, и гадолиний-159, который, напротив, испускает электроны с периодом полураспада всего 18 часов. Этот изотоп образуется в атомных реакторах; иногда атомы гадолиния-159 используют в качестве своеобразной радиоактивной метки. В целом же значение стабильных изотопов гадолиния для атомной энергетики намного больше, чем радиоактивных.

Тербий

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее - i_053.png

Элемент № 65. В природе существует в виде одного-единственного стабильного изотопа тербий-159. Элемент редкий, дорогой и используемый пока главным образом для изучения его же собственных свойств. Весьма ограниченно соединения тербия используют в люминофорах, лазерных материалах и ферритах. Искусственных изотопов тербия получено довольно много: их массовые числа от 146 до 164, исключая стабильный тербий-159. Все эти шестнадцать изотопов не отличаются долгожительством: самый длинный период полураспада у тербия-157 — больше 100 лет. Тербий-160, получаемый из стабильных тербия-159 и гадолиния-160 в результате ядерных реакций, нашел практическое применение в качестве радиоизотопного индикатора. Период полураспада этого изотопа 72,3 дня.

Своеобразны магнитные свойства тербия: при обычных условиях он — парамагнетик, но при охлаждении до — 54°C и ниже приобретает ферромагнитные свойства. В остальном же этот металл достаточно зауряден: серебристо-белого цвета, при нагревании покрывается окисной пленкой…

Темно-коричневый порошок окиси тербия имеет состав Tb4O7 или Tb2O3∙2ТbO2. Это значит, что при окислении часть атомов тербия отдает по три электрона, а другая часть — по четыре. Как и окисел празеодима Pr6O11, это вещество следует рассматривать как промежуточное соединение между двумя «чистыми» окислами тербия: Tb2O3 и TbO2. Эти вещества химикам также удалось получить — сначала Tb2O3, а затем, окисляя его атомарным кислородом, и TbO2. Изучены они, разумеется, значительно хуже, чем промежуточный окисел, образующийся «естественным путем» (чтобы реакция окисления шла быстро, тербий достаточно нагреть до 180°C).

1 ... 31 32 33 34 35 36 37 38 39 ... 133 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название