Популярная библиотека химических элементов. Книга первая. Водород — палладий
Популярная библиотека химических элементов. Книга первая. Водород — палладий читать книгу онлайн
«Популярная библиотека химических элементов» содержит сведения обо всех элементах, известных человечеству. Сегодня их 107, причем некоторые получены искусственно.
Как неодинаковы свойства каждого из «кирпичей мироздания», так же неодинаковы их истории и судьбы. Одни элементы, такие, как медь, железо, сера, углерод, известны с доисторических времен. Возраст других измеряется только веками, несмотря на то, что ими, еще не открытыми, человечество пользовалось в незапамятные времена. Достаточно вспомнить о кислороде, открытом лить в XVIII веке. Третьи открыты 100—200 лет назад, но лишь в наше время приобрели первостепенную важность. Это уран, алюминий, бор, литий, бериллий. У четвертых, таких, как, например, европий и скандий, рабочая биография только начинается. Пятые получены искусственно методами ядерно-физического синтеза: технеций, плутоний, менделевий, курчатовий… Словом, сколько элементов, столько индивидуальностей, столько историй, столько неповторимых сочетаний свойств.
В первую книгу вошли материалы о 46 первых, по порядку атомных номеров, элементах, во вторую — обо всех остальных.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Любое пористое горючее вещество, например опилки, будучи пропитанными голубоватой холодной жидкостью — жидким кислородом, становится взрывчатым веществом. Такие вещества называются оксиликвитами и в случае необходимости могут заменить динамит при разработке рудных месторождений.
Ежегодное мировое производство (и потребление) кислорода измеряется миллионами тонн. Не считая кислорода, которым мы дышим.
Промышленность кислорода
Так как горением в таком газе можно получить очень высокие температуры, полезные во многих… применениях, то быть может, что придет время, когда указанным путем станут на заводах и вообще для промышленности обогащать воздух кислородом.
Попытки создать более или менее мощную кислородную промышленность предпринимались еще в прошлом веке во многих странах. Но от идеи до технического воплощения часто лежит «дистанция огромного размера»…
В Советском Союзе особенно быстрое развитие кислородной промышленности началось в годы Великой Отечественной войны, после изобретения академиком П. Л. Капицей турбодетандера и создания мощных воздухоразделительных установок.
Еще Карл Шееле получал кислород по меньшей мере пятью способами: из окиси ртути, сурика, селитры, азотной кислоты и пиролюзита. На подводных лодках и сейчас получают кислород, разлагая богатые этим элементом хлораты Ii перхлораты. В любой школьной лаборатории демонстрируют опыт — разложение воды на кислород и водород электролизом. Но ни один из этих способов не может удовлетворить потребности промышленности в кислороде.
Энергетически проще всего получить элемент № 8 из воздуха, поскольку воздух — не соединение, и разделить воздух не так уж трудно. Температуры кипения азота и кислорода отличаются (при атмосферном давлении) на 12,8°С. Следовательно, жидкий воздух можно разделить на компоненты в ректификационных колоннах так же, как делят, например, нефть.
Но чтобы превратить воздух в жидкость, его нужно охладить до минус 196°С. Можно сказать, что проблема получения кислорода — это проблема получения холода.
Чтобы получать холод с помощью обыкновенного воздуха, последний нужно сжать, а затем дать ему расшириться и при этом заставить его производить механическую работу. Тогда в соответствии с законами физики воздух, обязан охлаждаться. Машины, в которых это происходит, называют детандерами.
До 1938 г. для получения жидкого воздуха пользовались только поршневыми детандерами. По существу, такой детандер — это аналог паровой машины, только работает в нем не пар, а сжатый воздух.

Петр Леонидович Капица (р. 1894) — создатель турбодетандера для получения жидкого кислорода; за эту работу он в 1945 г. удостоен звания Героя Coциалистического Труда. Им проведены исследования свойств жидкого гелия и открыто явление сверхтекучести
Чтобы получить жидкпй воздух с помощью таких детандеров, нужны были давления порядка 200 атм, причем по неизбежным техническим причинам на разных стадиях процесса давление было не одинаковым: от 45 до 200 атм. К.п.д. установки был немногим выше, чем у паровой машины. Установка получилась сложной, громоздкой, дорогой.
В конце 30-х. годов советский физик академик П. Л. Капица предложил использовать в качестве детандера турбину. Идея — не новая, ее еще в конце прошлого века высказывал Дж. Рэлей, но к.п.д. «докапицынских» турбин для ожижения воздуха был невысок. Поэтому небольшие турбодетандеры лишь выполняли кое-какую подсобную работу при поршневых детандерах.
Капица создал новую конструкцию, которая, по словам изобретателя, была «как бы компромиссом между водяной и паровой турбиной». Главная особенность турбодетандера Капицы в том, что воздух в ней расширяется не только в сопловом аппарате, но и на лопатках рабочего колеса. При этом газ движется от периферии колеса к центру, работая против центробежных сил.
Такая конструкция турбины позволила поднять к.п.д. установки с 0,5 до 0,8. И, кроме того, турбодетандер «делает» холод с помощью воздуха, сжатого всего лишь до нескольких атмосфер. Очевидно, что 6 атм получить намного проще и дешевле, чем 200. Немаловажно для экономики и то, что энергия, которую отдает расширяющийся воздух, не пропадает напрасно, она используется для вращения ротора генератора электрического тока.
Современные установки для разделения воздуха, в которых холод получают с помощью турбодетандеров, дают промышленности, прежде всего металлургии и химии, сотни тысяч кубометров газообразного кислорода. Они работают не только у нас, но и во всем мире.
Первый опытный образец турбодетандера был невелик. Его ротор восьми сантиметров в диаметре весил всего 250 г. Но, как писал П. Л. Капица в 1939 г., «экспериментальная эксплуатация этого турбодетандера показала, что он является надежным и очень простым механизмом. Технический к.п.д. получается 0,79—0,83». И этот турбодетандер стал «сердцем» первой установки для получения кислорода новым методом.
В 1942 г. построили подобную, но уже намного более мощную установку, которая производила до 200 кг жидкого кислорода в час. В конце 1944 г. вводится в строй самая мощная в мире турбокислородная установка, производящая в 6—7 раз больше жидкого кислорода, чем установка старого типа, и при этом занимающая в 3—4 раза меньшую площадь.
Современный блок разделения воздуха БР-2, в конструкции которого также использован турбодетандер, мог бы за сутки работы снабдить тремя литрами газообразного кислорода каждого жителя СССР.
30 апреля 1945 г. Михаил Иванович Калинин подписал Указ о присвоении академику П. Л. Капице звания Героя Социалистического Труда «за успешную разработку нового турбинного метода получения кислорода и за создание мощной турбокислородной установки». Институт физических проблем Академии наук СССР, в котором сделана эта работа, был награжден орденом Трудового Красного Знамени.
В наши дни быстро растет потребность в кислороде многих отраслей промышленности, в первую очередь металлургии. Соответственно растут мощности воздухоразделительных установок. А источник кислорода один — атмосфера.
Несколько строк в заключение
…В заключение зададим вопрос: неужели же доблесть, мужество, талант, остроумие, воображение — все эти замечательные свойства человеческого духа обусловлены только кислородом? — Такова теория доктора Окса.
Этого мнения, при всем уважении к кислороду, автор не разделяет. He надо приписывать кислороду того, что он дать не может. Он и без этого слишком много для нас значит.
ПРИЧИНА «ЭЛЕКТРИЧЕСКОГО ЗАПАХА». «Электрический запах» неизменно появлялся во время первых опытов по электролизу воды. Лишь в середине прошлого века было доказано, что этот запах принадлежит не самому электричеству, а попутно образующемуся при электролизе веществу, которое назвали озоном (от греческого όξω — пахну).
Вскоре было доказано, что озон состоит только из кислородных атомов; он образуется под действием электрических разрядов в воздухе и в чистом кислороде. Озон в полтора раза плотнее обычного кислорода. Его формула O3. Озон гораздо легче, чем кислород, превращается в жидкость, но в твердое состояние переходит при температуре, довольно близкой к точке плавления кислорода. Температура кипения кислорода и озона соответственно минус 182,97 и минус 111,9°С, а температура плавления — минус 218,8 для O2 и минус 192,7°С для O3. Цвет жидкого кислорода светло-голубой, озона — темно-синий с фиолетовым оттенком. И в газообразном состоянии озон не бесцветен, ему присуща довольно интенсивная синяя окраска.
Но мало кто видел синий озон — это вещество не стойко, его очень трудно сконцентрировать. При очень малых концентрациях запах у озона приятный, освежающий. Но если бы в воздухе был хотя бы 1% озона, то дышать этим воздухом мы бы уже не смогли, потому что озон весьма токсичен.
