Краткая история химии. Развитие идей и представлений в химии
Краткая история химии. Развитие идей и представлений в химии читать книгу онлайн
Известный американский биохимик, популяризатор науки и писатель-фантаст А. Азимов знакомит читателя с предметом химии, историей возникновения и развития основных идей и представлений.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Исходя из закона Гесса, представлялось вполне вероятным, что закон сохранения энергии равно применим и к химическим, и к физическим процессам. И действительно, дальнейшие обобщения показали, что законы термодинамики, вероятнее всего, проявляются в химии точно так же, как и в физике.
Это направление в экспериментах и в теории привело к выводу, что определенным химическим реакциям, как и физическим процессам, присуще свойственное только им самопроизвольное направление, приводящее к увеличению энтропии. Однако энтропия представляет собой величину, трудную для непосредственного измерения, поэтому химики начали искать другой, более простой критерий.
В 60-х годах прошлого столетия Бертло, уже завоевавший известность как органик-синтетик (см. гл. 5), обратился к термохимии. Он разработал методику проведения химических реакций в замкнутых сосудах, погруженных в воду заданной температуры. Определив температуру этой воды в конце реакции, можно было установить, какое количество теплоты выделяется в ходе данной реакции.
Используя такой калориметр (от латинского calorimeter — измерение тепла), Бертло тщательно измерил количество теплоты, выделяемой в результате сотен различных химических реакций. Подобные эксперименты независимо от Бертло провел также датский химик Ханс Петер Юрген Юлиус Томсен (1826—1909).
Бертло полагал, что реакции, сопровождающиеся выделением теплоты, являются самопроизвольными, в то время как реакции, сопровождающиеся поглощением теплоты, таковыми не являются. Поскольку каждая реакция, в ходе которой выделяется теплота, должна сопровождаться, если заставить ее идти в обратном направлении, поглощением теплоты (первыми стали придерживаться такой точки зрения Лавуазье и Лаплас, см. гл. 4), то, следовательно, любая химическая реакция идет самопроизвольно только в одном направлении, и при этом она сопровождается выделением теплоты.
Например, когда водород взаимодействует с кислородом, образуя воду, реакция протекает с выделением большого количества теплоты. Эта реакция самопроизвольная, и, однажды начавшись, она быстро идет к завершению и иногда заканчивается сильным взрывом.
В то же время обратная реакция — расщепление воды на водород и кислород — требует затраты энергии (тепловой или, лучше, электрической). Расщепление молекулы воды не является самопроизвольным; в отсутствие энергии расщепление вообще не происходит, и уже начавшаяся реакция тотчас же прекратится, если подачу энергии прервать.
Но это правило Бертло, на первый взгляд представлявшееся вполне приемлемым, было ошибочным. Во-первых, не все самопроизвольные реакции протекают с выделением теплоты; некоторые реакции сопровождаются поглощением теплоты, и в ходе таких реакций температура среды, окружающей реакционную смесь, действительно понижается.
Во-вторых, существуют обратимые реакции. Так, например, вещества A и B могут самопроизвольно взаимодействовать и превращаться в вещества C и D, которые в свою очередь могут вновь самопроизвольно образовать вещества A и B. И это несмотря на то, что если какая-либо реакция сопровождается выделением теплоты, то обратная ей реакция должна сопровождаться поглощением теплоты. Например, иодид водорода разлагается на йод и водород, которые вновь могут образовывать иодид водорода:
H2 + I2 ⇄ 2HI
(две стрелки, направленные в противоположные стороны, показывают, что реакция обратима).
Во времена Бертло обратимые реакции были уже известны. В 1850 г. Уильямсон первым тщательно изучил их. Основываясь на результатах проведенных им работ, Уильямсон (см. гл. 7) предложил структурные формулы эфиров. Он нашел условия, при которых смесь веществ A и B образовывала вещества C и D, а смесь веществ C и D образовывала вещества A и B. Однако и в том, и в другом случае в итоге получалась смесь веществ A, B, C и D, причем соотношение этих компонентов было определенным. Смесь при этом находилась в состоянии равновесия. Хотя состав смеси оставался скорее всего постоянным, тем не менее Уильямсон считал, что вещества A и B реагируют, образуя вещества C и D, а вещества C и D реагируют, образуя вещества A и B. Обе реакции идут непрерывно, но они нейтрализуют друг друга, создавая иллюзию покоя, тогда как в действительности смесь находится в состоянии динамического равновесия.
Работа Уильямсона ознаменовала начало изучения химической кинетики — области химии, изучающей скорости химических реакций. Уильямсон ясно показал, что самопроизвольный характер химической реакции в ряде случаев определяет не просто выделение теплоты, а нечто большее. Проводя свои многочисленные калориметрические измерения, Бертло и Томсен уже выявили это «нечто большее», но, к сожалению, вопрос остался нерешенным из-за того, что работы Томсена были опубликованы на малодоступном ученым норвежском языке.
Химическая термодинамика
В 1863 г. норвежские химики Като Максимилиан Гульдберг (1836—1902) и Петер Вааге (1833—1900) опубликовали брошюру, в которой излагали свою точку зрения на причины, определяющие направление течения самопроизвольных реакций. Эти ученые вернулись к предположению, высказанному Бертолле (см. гл. 4) за полстолетия до этого. Бертолле считал, что направление реакции зависит от массы участвующих в ней отдельных веществ. Гульдберг и Вааге полагали, что направление реакции определяется не просто массой отдельных веществ, а скорее массой отдельных веществ, приходящейся на данный объем реагирующей смеси, другими словами — концентрацией веществ.
Предположим, что вещества A и B могут реагировать с образованием веществ C и D, а вещества C и D могут реагировать с образованием веществ A и B:
A + B → C + D
Эта обратимая реакция достигает равновесия при таких условиях, когда в системе представлены все четыре вещества: A. B, C и D. Положение равновесия зависит от соотношения скоростей реакций веществ A и B (скорость 1) и веществ C и D (скорость 2).
Предположим, что скорость 1 намного больше, чем скорость 2. В этом случае вещества A и B реагируют быстро, а вещества C и D — медленно, и вскоре количество веществ C и D намного превысит количество веществ A и B, и в состоянии равновесия в смеси преобладают вещества C и D. Взглянув на приведенное выше уравнение, мы скажем, что в этом случае точка равновесия сдвинута «далеко вправо».
Если же скорость 2 намного выше, чем скорость 1, вещества C и D реагируют намного быстрее, чем вещества A и B, и в состоянии равновесия в смеси преобладают вещества A и B. Точка равновесия в этом случае сдвинута «далеко влево».
Но скорость 1 зависит от частоты столкновений молекул A и B, так как только при таком столкновении (и то не всегда) может произойти реакция. В свою очередь скорость 2 зависит от частоты столкновений молекул C и D.
Предположим теперь, что к реакционной смеси добавляется дополнительное количество вещества A или B (или того и другого) и что объем смеси при этом не меняется. Концентрация вещества A и B (или того и другого) в этом случае увеличивается, и вероятность столкновения молекул возрастает (подобно тому как в час пик, когда автострада забита машинами, вероятность их столкновения намного больше, чем ранним утром, когда машин относительно мало).
Таким образом, с повышением концентрации вещества A или B (или того и другого) скорость 1 увеличивается, а с уменьшением концентрации снижается. Точно так же с ростом концентрации вещества C или D (или и C, и D) увеличивается скорость 2. Меняя скорость 1 или 2, можно изменить состав равновесной смеси. С изменением концентрации любого из участвующих в реакции веществ меняется положение точки равновесия.
Итак, если к находящейся в состоянии равновесия смеси веществ добавить (или удалить из нее) один из компонентов, равновесие нарушится, и точка равновесия сместится. Тем не менее Гульдбергу и Вааге удалось найти одну неменяющуюся компоненту. Соотношение произведений концентраций исходных веществ (A и B) и продуктов реакции (C и D) в состоянии равновесия остается постоянным, т. е.