-->

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее

На нашем литературном портале можно бесплатно читать книгу Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее, Коллектив авторов-- . Жанр: Химия / Справочники. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее
Название: Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее
Дата добавления: 15 январь 2020
Количество просмотров: 276
Читать онлайн

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее читать книгу онлайн

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее - читать бесплатно онлайн , автор Коллектив авторов

«Популярная библиотека химических элементов» содержит сведения обо всех элементах, известных человечеству. Сегодня их 107, причем некоторые получены искусственно.

Как неодинаковы свойства каждого из «кирпичей мироздания», так же неодинаковы их истории и судьбы. Одни элементы, такие, как медь, железо, сера, углерод, известны с доисторических времен. Возраст других измеряется только веками, несмотря на то, что ими, еще не открытыми, человечество пользовалось в незапамятные времена. Достаточно вспомнить о кислороде, открытом лишь в XVIII веке. Третьи открыты 100 — 200 лет назад, но лишь в паше время приобрели первостепенную важность. Это уран, алюминий, бор, литий, бериллий. У четвертых, таких, как, например, европий и скандий, рабочая биография только начинается. Пятые получены искусственно методами ядерно-физического синтеза: технеций, плутоний, менделевий, курчатовий… Словом, сколько элементов, столько индивидуальностей, столько историй, столько неповторимых сочетаний свойств.

В первую книгу вошли материалы о 46 первых, по порядку атомных номеров, элементах, во вторую — обо всех остальных.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Пока о 107-м элементе известно немногое. Часть ядер 261107 — примерно 20% — распадается спонтанно, а остальные испускают по альфа-частице и превращаются в пятисекундный изотоп 257105.

Поскольку большинство ядер 261107 испытывает альфа- распад, физики надеются, что более тяжелые изотопы 107-го элемента будут жить дольше. Если это окажется так, то будут правы теоретики, утверждающие, что по мере приближения к атомным номерам около 114 время жизни сверхтяжелых ядер будет расти, и среди элементов второй сотни может существовать «остров стабильности».

Впрочем, получить сравнительно долгоживущие тяжелые изотопы 107-го элемента еще предстоит. Пока же наблюдалось лишь немногим больше ста событий, которые авторы исследования объясняют как распад изотопа 261107, весьма короткоживущего…

Первая научная публикация об элементе № 107 датирована 29 январи 1976 г.

Через пять лет в ядерной реакции висмута-209 с хромом-24 западногерманские физики получили еще один изотоп 107-го элемента — с массовым числом 262.

Вот пока и все, что известно об элементе № 107, замыкающем ныне таблицу Менделеева. Надолго ли?

А после 107-го?

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее - i_162.png

Беседа корреспондента журнала «Химия и жизнь» с директором Лаборатории ядерных реакций Объединенного института ядерных исследований в Дубне академиком Г.Н. Флеровым.

Вопрос: Первый вопрос не связан с проблемами трансурановых элементов. Он о взаимосвязи ядерной физики и периодической системы химических элементов…

Ответ: Синтез новых элементов это не самое трудное дело. Труднее доказать, что новое действительно получено. Благодаря периодическому закону физики, синтезирующие новые химические элементы, находятся в лучшем положении, чем мореплаватели, открывавшие когда-то новые острова и страны. Начиная работу, мы уже кое-что знаем о наших неоткрытых «островах»; это придает поискам изначальную целенаправленность.

Когда Менделеев вынашивал и создавал свой великий закон, еще не было такой науки — ядерной физики, еще не была открыта радиоактивность… Марии Склодовской-Кюри в день открытия периодического закона — 1 марта 1869 г. еще не было двух лет. Сама идея превращения элементов казалась тогда алхимической, ненаучной. Мне кажется, что это пошло на пользу науке, ибо эта идея могла в какой-то степени затруднить выявление тех закономерностей, которые Дмитрий Иванович обобщил в своем законе.

Интуитивно чувствуя чрезвычайную важность изучения последних по атомным номерам элементов, Менделеев направлял взоры исследователей в ту область системы элементов, на которой впоследствии взросла ядерная физика.

И если поначалу в среде физиков (я имею в виду ядерную физику) бытовало мнение, что их наука и периодическая система мало взаимосвязаны, то это была одна из самых короткоживущих идей. Ни физик, ни химик, ни любой другой ученый-естествоиспытатель не может, как бы он того пи желал, обойти законы природы. В том числе и периодический закон. А та область ядерной физики, в которой мне посчастливилось работать, расширяет границы периодической системы элементов, опираясь на самую систему.

Вопрос: Что с Вашей точки зрения, важнее — заниматься дальше изучением уже известных элементов и изотопов или синтезировать новые?

Ответ: Чем дальше отстоит изотоп от области стабильности, тем больше информации о строении ядра он может нам дать. Исследование вещества в экстремальном состоянии, в экстремальных условиях его существования — общий методологический подход, который используется и физиками, и химиками. Изотопы, далекие от области стабильности, — это и есть «экстремальный объект исследования».

Исследования сверхтяжелых ядер важны прежде всего тем, что они дают возможность получить максимум информации о строении ядра. Ради этого стоит тратить силы и средства на синтез и исследование новых элементов.

Вопрос: Что больше всего препятствует синтезу и идентификации элементов с атомными номерами больше 107 и как эти препятствия можно преодолеть?

Ответ: Главные препятствия — это слишком быстрый распад ядер, исчезающе малое время их жизни и все уменьшающееся сечение образования, т. е. «выход» новых ядер в ядерных реакциях. Но это не значит, что 107-й элемент — последний, замыкающий систему. Нужно пытаться синтезировать новые, все более тяжелые элементы, нужно искать их в природных объектах.

В солнечной системе нуклеосинтез закончился миллиарды лет назад, но в некоторых областях космоса он либо протекал значительно позже, либо продолжается и поныне. Таким образом, в космосе определенно должны быть сверхтяжелые по нашим понятиям ядра — результат нуклеосинтеза, — которые избежали губительного распада. Часть вещества звезд, на которых идут эти процессы, может в виде космического излучения достигнуть Земли и ее окрестностей. Следовательно, изотопы сверхтяжелых элементов с относительно малым временем жизни могут быть обнаружены в околоземном пространстве.

Не исключено, что сверхтяжелые элементы есть и в земной коре, и хотя пока ни в одном эксперименте (а они проводились в разных странах) не удалось идентифицировать изотопы с «острова стабильности», эта идея продолжает волновать исследователей.

Запись 1975 г., редакция — 1981 г.

Восьмой период: каким он будет?

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее - i_163.png

А действительно — каким? Казалось бы, логичнее всего предположить, что, подобно другим большим периодам менделеевской таблицы, и в частности седьмому, которым она сегодня кончается, этот период тоже будет включать 32 элемента. Однако в 1968 г. В.И. Гольданский, ныне академик, выдвинул гипотезу о ином строении восьмого периода. В нем, согласно этой гипотезе, будет не 32, а 50 элементов.

Эта, последняя, глава книги представляет собой запись беседы В.И. Гольданского с корреспондентом журнала «Химия и жизнь».

Вопрос: Что заставило вас задуматься о строении восьмого периода таблицы Менделеева? Ведь элементы этого периода пока представляются в высшей степени труднодостижимыми…

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее - i_164.png
Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее - i_165.png
Так может выглядеть длиннопериодный вариант таблицы Менделеева с добавлением восьмого и девятого периодов (по Гольданскому)

Ответ: Еще всего несколько лет назад нам казалось, что вопрос о химических свойствах элементов восьмого периода — чисто схоластический. У физиков были надежды получить изотопы еще нескольких новых элементов, примерно до № 110, но считалось, что химикам с ними будет делать нечего: слишком мало будет время жизни новых ядер. Однако затем появились более оптимистические прогнозы, теоретики вычислили возможность существования «островов стабильности», да и методы радиохимии становятся все более быстрыми, или, как говорят, экспрессными. Новые элементы получать все труднее, согласен. И тем не менее есть основания ожидать «скачка» в далекую трансурановую область. Седьмой период заканчивается элементом № 118, значит, один из предполагаемых «обитателей» «островов стабильности» — элемент № 126 — это уже элемент восьмого периода.

Не исключено, что уже в самом недалеком будущем химикам придется столкнуться с элементом или даже с элементами восьмого периода. К этим элементам у химиков должен быть теоретический «ключ». А ключ только один — периодическая система Д.И. Менделеева, ее строжайшая логика и основанное на этой логике ее дальнейшее развитие.

Вопрос: Вы сказали «элементы восьмого периода».

Какие есть к тому основания?

Ответ: В 1936 г. Нобелевской премии были удостоены ученые-физики, создатели теории оболочечного строения ядра М. Гепперт-Майер и Г. Иенсен. Согласно этой теории в ядре, как и в атоме, могут быть случаи предельного заполнения определенных оболочек. Только если в атоме это электронные оболочки, то здесь — протонные и нейтронные. «Магические числа», о которых много писали в газетах и журналах, как раз отвечают случаям предельного заполнения протонных и нейтронных оболочек в ядре. Не буду перечислять псе магические числа, скажу только, что 126 и 184 — в их числе. Значит, у изотопа 310126, ядро которого содержит 126 протонов и 184 нейтрона, время жизни должно быть значительно больше, чем у других ядер далекой трансурановой области. Он же «дважды магический». И возможно, что где-то в этой же области есть менее «живучие», но все-таки приемлемые (по времени жизни) для химических исследований изотопы.

Перейти на страницу:
Комментариев (0)
название