Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее
Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее читать книгу онлайн
«Популярная библиотека химических элементов» содержит сведения обо всех элементах, известных человечеству. Сегодня их 107, причем некоторые получены искусственно.
Как неодинаковы свойства каждого из «кирпичей мироздания», так же неодинаковы их истории и судьбы. Одни элементы, такие, как медь, железо, сера, углерод, известны с доисторических времен. Возраст других измеряется только веками, несмотря на то, что ими, еще не открытыми, человечество пользовалось в незапамятные времена. Достаточно вспомнить о кислороде, открытом лишь в XVIII веке. Третьи открыты 100 — 200 лет назад, но лишь в паше время приобрели первостепенную важность. Это уран, алюминий, бор, литий, бериллий. У четвертых, таких, как, например, европий и скандий, рабочая биография только начинается. Пятые получены искусственно методами ядерно-физического синтеза: технеций, плутоний, менделевий, курчатовий… Словом, сколько элементов, столько индивидуальностей, столько историй, столько неповторимых сочетаний свойств.
В первую книгу вошли материалы о 46 первых, по порядку атомных номеров, элементах, во вторую — обо всех остальных.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Позже, когда удалось получить значительно большие количества (микрограммы и десятки микрограммов!), сумели, наконец, выделить и металлический берклий. Первый «слиток» весил 5 мкг. Получили его, восстановив литием трехфтористый берклий.
Тогда же была определена температура плавления этого металла — 986°C — и обнаружено, что металлический берклий может существовать в виде двух модификаций, отличающихся кристаллической структурой.
Заметно проще изучать химию берклия в растворе. Здесь достаточно вовсе невесомых, «индикаторных», количеств благодаря высокой удельной бета-активности объекта. Исследованиями такого рода установлено, что наиболее устойчивое валентное состояние берклия в водных растворах — 3+, однако его несложно окислить и до четырехвалентного состояния.
Существование четырехвалентного берклия позволяет отделять этот элемент от других актиноидов и лантаноидов (продуктов деления), которые либо не имеют такой валентной формы, либо труднее в нее переводятся.
Конечно, далеко не все в химии берклия уже известно, Продолжается изучение различных его свойств, в частности способности к образованию комплексных соединений, поведения берклия в ионообменных и экстракционных процессах и т. д. Результаты этих исследований в свою очередь позволяют разрабатывать еще более эффективные методы его выделения.
Калифорний
В древних китайских летописях сохранилась запись о чудесной необычайно яркой звезде, неожиданно возникшей на небосводе, которая затем постепенно угасала, и через два года от нее не осталось следа… Современные астрономы считают, что их давним предшественникам посчастливилось наблюдать редчайшее событие — рождение сверхновой звезды (supernovae, как ее нынче именуют в звездных каталогах).
В нашей галактике сверхновая вспыхивает примерно раз в несколько столетий. Астрономов XX в. выручают мощные телескопы, с их помощью ученые наблюдают рождение ярких звезд на расстоянии в сотни световых лет, в отдаленных мирах.
Из анализа летописей и современных наблюдений получалось, что сравнительно медленное убывание блеска сверхновой можно объяснить только энергией какого-то радиоактивного изотопа с периодом полураспада, близким к постоянной времени ее затухания.
Изотоп для сверхновой?
Долгое время не находили подходящего изотопа. Наконец, в 1952 г. среди новых ядер, извлеченных из продуктов термоядерного взрыва «Майк», был обнаружен удивительный изотоп калифорний-254. Удивительный потому, что главным видом его распада оказалось спонтанное деление. Прежде подобные ядра в таблицах изотопов не числились.
Удивительной оказалась и энергетика этого изотопа. Удельную мощность калифорниевого источника трудно назвать иначе, как гигантской, — 10000 квт/кг! Вполне подходящим для объяснения затухания сверхновой звезды оказался и 60-дневный период полураспада калифорния-254.
Возникла любопытная гипотеза: рождение сверхновой звезды объяснялось космическим термоядерным взрывом, в котором из стабильных ядер, наглотавшихся нейтронов, образовывалось значительное количество калифорния-254; длительное послесвечение звездной материи объяснялось энергией распадающегося калифорния.
С элементом № 98 ученые познакомились за два года до открытия «звездного» изотопа. В 1950 г. известные американские ученые Стэнли Томпсон, Генри Стрит, Альберт Гиорсо и Гленн Сиборг поместили в поток быстрых гелиевых ядер микрограммовую мишень из кюрия-242, пожалуй, самого неподходящего для этой цели изотопа элемента № 96. У кюрия-242 очень высокая удельная активность, и работать даже с микрограммовыми количествами подобного вещества весьма неприятно. Да и выход 98-го элемента в реакции кюрий + альфа-частица ожидался мизерным. Слишком мало нейтронов в ядре 242Cm, а это, как хорошо известно физикам-ядерщикам, всегда ведет к уменьшению к. п. д. реакции: при недостатке ядерных нейтронов шансы на образование новых элементов заметно уменьшаются. Но другого пути не было. В 1950 г. увеличить атомный номер облучаемого элемента больше чем на два еще не могли: самыми тяжелыми ядерными снарядами тогда были ядра гелия, альфа-частицы. Поэтому мишенью мог быть только кюрий, а других изотопов кюрия, кроме 242-го, еще не получили.
Новый элемент родился в ядерной реакции
Получили всего несколько тысяч атомов. Их нужно было отделить от кюрия-242, активность которого достигала 1011 распадов в минуту; столько же альфа-частиц рождается в куске урана весом в несколько десятков килограммов.
По предварительным оценкам (основанным на систематике свойств изотопов трансурановых элементов) ожидали, что период полураспада нового изотопа будет около одного часа. Так что надо было спешить. Кюриевую мишень быстро растворили, раствор пустили в хроматографическую колонку с катионообменной смолой Дауэкс-50 и стали промывать смолу элюентом — альфа-оксиизобутиратом аммония.
Адсорбированные смолой атомы переходили в элюент и вместе с ним просачивались сквозь смолу. Капли элюента падали на платиновые пластинки, расположенные на краю круглого вращающегося столика. Ожидаемый порядок выхода актиноидов определили заранее, в опытах с лантаноидами. Элемент № 98 — аналог диспрозия — вышел из колонки вовремя. Его исследовали: период полураспада 24598 оказался равным 44 минутам.
Новый элемент был назван калифорнием — в честь университета и штата, где были добыты его первые атомы. Авторы писали: «Известно, что название “диспрозий” происходит от греческого слова «труднодоступный». Назвав открытый элемент калифорнием, мы хотели отметить, что первооткрывателям элемента пришлось столь же трудно, как век назад пионерам Америки трудно было достигнуть Калифорнии».
Изотоп в тупике
Получить весовые количества калифорния в ядерных реакциях с заряженными частицами — задача практически невыполнимая: слишком мал выход этого элемента при слиянии двух атомных ядер. Так, ядра кюрия, бомбардируемые альфа-частицами, как правило, делятся ими на ядра-осколки — 98-й появляется только в исключительных случаях. Поэтому весовые количества калифорния сегодня получают, облучая тяжелые изотопы плутония и кюрия в нейтронных потоках мощных ядерных реакторов, построенных специально для производства трансуранов. Иначе, в обычном реакторе, накопление калифорния будет протекать слишком медленно. Потребуются десятки лет, чтобы плутоний или кюрий превратились в элемент № 98.
На пути плутоний — калифорний в осколки превращаются 9999 ядер из 10000. В конечном итоге на грамм калифорния затрачиваются 10 кг плутония-239. И все же потери в реакторе в тысячи раз меньше потерь при синтезе калифорния в пучке ускоренных ядер. Изотоп 252Cf по существу замыкает цепочку плутоний — калифорний. Это ядро слабо взаимодействует с нейтронами, его очень трудно превратить в еще более тяжелые изотопы. Калифорний-252 становится как бы естественным «тупиком» в реакторной цепи превращений плутония. Поэтому в тупике и скапливаются в основном ядра изотопа 252Cf. А более легкие изотопы — 249Cf, 250Cf, 251Cf — получаются в гораздо меньших количествах, хотя и стоят в предыдущих звеньях цепи превращений.
Первые микрограммовые количества калифорния-249 были накоплены в 1959 г. на американском реакторе для испытания материалов. Тогда же синтезированы и первые чистые соединения калифорния — окись Cf2O, и оксихлорид CfOCI.
Для элемента № 98 характерна валентность 3+. Нитрат, сульфат, галогениды и перхлорат трехвалентного калифорния растворимы в воде. В другие валентные состояния калифорний переводится очень трудно. Лишь недавно радиохимикам Института физической химии АН СССР во главе с академиком В.И. Спициным и доктором химических наук Н.Б. Михеевым удалось получить двухвалентный калифорний, а американским радиохимикам — четырехвалентный (в виде твердого тетрафторида).