Никола Тесла. Первая отечественная биография
Никола Тесла. Первая отечественная биография читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Одним из первых глубоко исследовал свойства электрического тока в 1801–1802 годах петербургский академик В.В. Петров. Работы этого выдающегося ученого, построившего самую крупную в мире в те годы батарею из 42 0 0 медных и цинковых кружков, установили возможность практического использования электрического тока для нагрева проводников. Кроме того, Петров наблюдал явление электрического разряда между концами слегка разведенных углей как в воздухе, так и в других газах и вакууме, получившее название электрической дуги.
В.В. Петров не только описал открытое им явление, но и указал на возможность его использования для освещения или плавки металлов и тем самым впервые высказал мысль о практическом применении электрического тока. С этого момента и должно начинать историю электротехники как самостоятельной отрасли техники.
Опыты с электрическим током привлекали внимание многих ученых разных стран. В 1802 году это явление было вновь наблюдаемо датским физиком Эрстедом, который в марте 1 820 года опубликовал на латинском языке брошюру под заглавием «Опыты, касающиеся действия электрического конфликта на магнитную стрелку». В этом сочинении «электрическим конфликтом» был назван электрический ток.
Небольшая, всего в пять страниц, книжка Эрстеда в том же году была издана в Копенгагене на шести языках. Сами опыты его были повторены осенью 1820 года швейцарским естествоиспытателем де ля Ривом на съезде естествоиспытателей в Женеве. На этом съезде присутствовал член Парижской академии наук Араго, который по возвращении показал в заседании академии опыт Эрстеда. Еще до конца 1820 года Араго провел ряд исследований, из которых наиболее важным было открытие в 1824 году явления увлечения медного диска вращающимся вблизи него магнитом. Это явление, названное «магнетизмом вращения», долгое время оставалось лишь эффектным физическим опытом. Но позднее именно оно послужило основой многих практических изобретений, и в частности электродвигателя переменного тока.
Большое значение имело также открытие Био и Саваром законов действия тока на магнитную стрелку.
Особо следует сказать о деятельности замечательного ученого Андре Мари Ампера [8], положившего начало изучению динамических действий электрического тока и установившего целый ряд законов электродинамики.
Едва лишь Араго продемонстрировал на заседании Парижской академии наук опыт Эрстеда, как Ампер, повторив его, 18 сентября 1 820 года, ровно через неделю, представил в академию сообщение о своих исследованиях. На следующем заседании, 25 сентября, Ампер закончил чтение доклада, в котором он изложил законы взаимодействия двух токов, протекающих по параллельно расположенным проводникам. С этого момента академия еженедельно слушала новые сообщения Ампера о его опытах, завершивших открытие и формулирование основных законов электродинамики.
Одной из важнейших заслуг Ампера было то, что он впервые объединил два разобщенных ранее явления — электричество и магнетизм — одной теорией электромагнетизма и предложил рассматривать их как результат единого процесса природы. Эта теория, встреченная современниками Ампера с большим недоверием, была весьма прогрессивной и сыграла огромную роль в правильном понимании открытых позднее явлений.
Через пять лет после первых работ Ампера был построен первый электромагнит и началось глубокое изучение законов электромагнетизма. В 1827 году немецкий ученый Георг Ом открыл один из фундаментальных законов электричества, устанавливающий основные зависимости между силой тока, напряжением и сопротивлением цепи, по которой протекает электрический ток; в 1847 году Кирхгоф сформулировал законы развертывания токов в сложных цепях.
Открытия Эрстеда, Араго, Ампера заинтересовали гениального английского физика Майкла Фарадея и побудили его заняться всем кругом вопросов о превращении электрической и магнитной энергии в механическую. В 1821 году он нашел еще одно решение поставленной задачи превращения электрической и магнитной энергии в механическую и продемонстрировал свой прибор, в котором он получал явление непрерывного электромагнитного вращения. В тот же день Фарадей записал в свой рабочий дневник обратную задачу: «Превратить магнетизм в электричество». Более десяти лет потребовалось, чтобы решить ее и найти способ получения электрической энергии из магнитной и механической. Лишь в конце 1831 года Фарадей сообщил об открытии им явления, названного затем электромагнитной индукцией и составляющего основу всей современной электроэнергетики.
Исследование Фарадея и работы русского академика Э.Х. Ленца, сформулировавшего закон, по которому можно было определить направление электрического тока, возникающего в результате электромагнитной индукции, дали возможность создать первые электромагнитные генераторы и электродвигатели.
Вначале электрогенераторы и электродвигатели развивались независимо друг от друга, как две совершенно разные машины. Первый изобретатель электрического генератора, основанного на принципе электромагнитной индукции, пожелал остаться неизвестным. Произошло это так. Вскоре после опубликования доклада Фарадея в Королевском обществе, в котором было изложено открытие электромагнитной индукции, ученый нашел в своем почтовом ящике письмо, подписанное инициалами Р. М. Оно содержало описание первого в мире синхронного генератора и приложенный к нему чертеж.
Фарадей, внимательно разобравшись в этом проекте, направил письмо P.M. и чертеж в тот же журнал, в котором был в свое время помещен его доклад, надеясь, что неизвестный изобретатель, следя за журналом, увидит опубликованным не только свой проект, но и сопровождающее его письмо Фарадея, исключительно высоко оценивающее изобретение P.M.
Действительно, спустя почти полгода P.M. прислал в редакцию журнала дополнительные разъяснения и описание предложенной им конструкции электрогенератора, но и на этот раз пожелал остаться неизвестным. Имя истинного создателя первого электромагнитного генератора так и осталось скрытым под инициалами, и человечество до сих пор, несмотря на тщательные розыски историков электротехники, остается в неведении, кому же оно обязано одним из важнейших изобретений.
Машина P.M. не имела устройства для выпрямления тока и была первым генератором переменного тока. Но этот ток, казалось, не мог быть использован для дугового освещения, электролиза, телеграфа, уже прочно вошедших в жизнь. Необходимо было, по мысли конструкторов того времени, создать машину, в которой можно было бы получать ток постоянным по направлению к величине.
Почти одновременно с P.M. конструированием генераторов занимались братья Пикси и профессор физики Лондонского университета и член Королевского общества В. Риччи. Созданные им машины имели специальное устройство для выпрямления переменного тока в постоянный — так называемый коллектор.
Дальнейшее развитие конструкций генератора постоянного тока шло необычайно быстрыми темпами. Менее чем за сорок лет динамо-машина приобрела почти полностью форму современного генератора постоянного тока. Правда, обмотка этих динамо-машин была распределена по окружности неравномерно, что ухудшало работу таких генераторов — напряжение в них то возрастало, то снижалось, вызывая неприятные толчки.
В 1870 году Зеноб Грамм предложил особую, так называемую кольцевую обмотку якоря динамо-машины. Равномерное распределение обмотки якоря давало возможность получать совершенно равномерное напряжение в генераторе и такое же вращение двигателя, что значительно улучшило свойства электрических машин. По существу, изобретение это повторяло то, что было уже создано и описано в 1 860 году итальянским физиком Пачинноти, но прошло незамеченным и осталось неизвестным 3. Грамму.
Машины с кольцевым якорем получили особенно большое распространение после того, как на Венской всемирной выставке в 1873 году была обнаружена обратимость электрических машин Грамма: одна и та же машина при вращении якоря давала электрический ток, при протекании тока через якорь вращалась и могла быть использована в качестве электродвигателя.