-->

Космическая битва империй. От Пенемюнде до Плесецка

На нашем литературном портале можно бесплатно читать книгу Космическая битва империй. От Пенемюнде до Плесецка, Славин Станислав Николаевич-- . Жанр: История / Публицистика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Космическая битва империй. От Пенемюнде до Плесецка
Название: Космическая битва империй. От Пенемюнде до Плесецка
Дата добавления: 15 январь 2020
Количество просмотров: 251
Читать онлайн

Космическая битва империй. От Пенемюнде до Плесецка читать книгу онлайн

Космическая битва империй. От Пенемюнде до Плесецка - читать бесплатно онлайн , автор Славин Станислав Николаевич

Книга посвящена истории развития отечественной и зарубежной военной космонавтики. Автор в популярной форме рассказывает о малоизвестных сторонах освоения космоса. Читатель узнает о первых проектах космических двигателей и кораблей, о многочисленных трудностях, которые предстояло преодолеть человечеству на пути в неведомое; познакомится с первыми, порой фантастическими, доктринами освоения и использования околоземного и космического пространства, с устройством первых космических пилотируемых и непилотируемых кораблей и многим другим.

Книга адресована всем, кто интересуется освоением космоса, ракетостроением и военной техникой.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 79 80 81 82 83 84 85 86 87 ... 105 ВПЕРЕД
Перейти на страницу:

Поэтому в НАСА, в Космическом центре имени Джонсона, разрабатывают ныне модуль совершенно нового типа, а именно… надувной!

Основу модуля, который разработчики назвали «TransHab», составляют углеродные волокна, которые образуют силовой каркас. Сверху оболочка из лёгкой некстелевой пены. Она, как своеобразная подушка, гасит энергию микрометеоритов, постоянно бомбардирующих поверхность станции.

Между тем энергия маленького камешка, летящего со скоростью 7 км/с, в 50 (!) раз больше, чем у пули крупнокалиберного пулемёта! Поэтому под пеной у «TransHab» лежит ещё три слоя кевлара — материала, из которого шьют бронежилеты. И наконец, чтобы сделать стенку модуля ещё более прочной, в материал вплетены углепластиковые ленты.

В итоге максимальный размер частицы, которая безопасна для «TransHab», — 1,8 см, в то время как алюминиевый модуль МКС может выдержать частицы диаметром только 1,3 см.

Однако в космосе ещё одна опасность, которая не всегда оценивается адекватно. Грузовые корабли и «Шаттлы» тоже несут в себе потенциальный риск. Размеры и инерция многотонных космических бродяг могут быть причиной очень неприятных последствий. Как уже говорилось, при таком столкновении с грузовым кораблём «Прогресс» станция «Мир» была частично выведена из строя. «TransHab» в таком случае, спружинив, просто отлетит в сторону. Он же надувной!

И ещё одна деталь: «TransHab» создавался как жилище на орбите, и его конструкция позволяет «быть как дома», находясь намного дальше от Земли. В надувных куполах, к примеру, могут разместиться первые «марсиане», прилетевшие туда с Земли. Впрочем, и на нашей планете ему найдётся работа — надёжный модуль идеально подходит для жилья исследователей в отдалённых уголках мира или рабочих-нефтяников.

Кстати, аналогичные конструкции разрабатываются и нашими специалистами из Центра имени Г.Н. Бабакина. Накопив тридцатилетний опыт в возведении пневмоконструкций, в том числе и в суровых условиях Арктики, они теперь переносят его и в космос.

Если всё пойдёт, как запланировано, первые пневматические модули должны появиться на орбите уже в текущем десятилетии.

КОСМИЧЕСКИЙ ЛИФТ. А теперь давайте поговорим ещё об одной любопытной конструкции, с помощью которой дорога на орбиту, к тому же надувному модулю станет намного короче и проще.

Обычно бывает как? Фантасты высказывают какую-то идею, а инженеры затем пытаются её осуществить. В данном же случае всё обстоит как раз наоборот: фантасты не поспевают за фантазиями инженеров. Судите сами…

Ещё 31 июля 1960 года «Комсомольская правда» опубликовала статью ленинградского инженера Юрия Арцутанова. Именно в ней впервые рассказывалось о принципе действия «внеземного» подъёмника.

Потом идею подхватили другие специалисты, а всем известный английский писатель-фантаст Артур Кларк подробно описал её в своём романе «Фонтаны рая».

Внешне всё выглядит вроде бы просто. Главный элемент подъёмника — трос, один конец которого крепится на поверхности Земли, другой — теряется в далёком космосе на высоте около 100 тысяч км (это примерно четверть расстояния до Луны). Причём, несмотря на то что второй конец троса может быть попросту оставлен в пространстве, он будет натянут, как струна.

Вся хитрость в том, что, подчиняясь законам физики, трос этот окажется под воздействием двух могучих разнонаправленных сил.

Чтобы понять их природу, вспомним доморощенный опыт. Привяжите к бечёвке, какой-нибудь предмет и начинайте раскручивать его. Как только предмет приобретёт некую скорость, верёвка тут же натянется. Почему? Да потому, что на предмет действует центробежная сила. А на саму верёвку — сила центростремительная, которая и натягивает её.

Нечто подобное произойдёт и с поднятым в космос тросом. Любой объект на его верхнем конце или даже сам свободный конец будет вращаться подобно искусственному спутнику нашей планеты. Стало быть, на этот конец будет действовать центробежная сила. Одновременно на тот же трос будет действовать и противоположная сила — земного притяжения. И тем ощутимее, чем ближе он находится к Земле. А чем дальше в космос, тем, наоборот, энергичнее проявляется центробежный фактор. При определённых условиях две противоположные силы уравновешивают друг друга. Происходит это, когда центр массы гигантского каната находится на высоте 36 тыс. км, то есть на так называемой геостационарной орбите.

Именно там находящиеся искусственные спутники висят неподвижно над Землёй, совершая вместе с ней полный оборот за 24 часа. Вот из этой как бы срединной точки лифтовый канат и должен идти вниз, к Земле. В этом случае огромный кабель будет не только натянут, но и сможет постоянно занимать строго определённое положение — вертикально к земному горизонту, точно по направлению к центру нашей планеты.

А дальше, используя эту рукотворную вертикаль, можно отправлять кабины в космос и опускать их на Землю.

Именно этот способ путешествия в космос и был описан в романе Артура Кларка, вышедшем в свет в 1978 году. Идея Арцутанова, таким образом, приобрела всемирную известность. Вот только воплотить в жизнь её почему-то никто не торопился. А всё потому, что в схеме имелось одно слабое звено. Неизвестно было, на чём подвешивать кабину космического лифта. Если использовать обычный стальной трос, то простейший расчёт показывал: он порвётся под воздействием собственной тяжести уже при длине 50 км.

Артур Кларк в своём романе предложил заменить сталь на лёгкий и очень прочный кевлар. Однако, во-первых, где взять такое количество дефицитного и достаточно дорогого материала? А во-вторых, и в главных, даже при изобилии кевлара длину каната можно увеличить лишь на сотню-другую километров, то есть достичь орбит низко летящих спутников. На большее и прочности кевлара не хватит…

Это, кстати, понимал сам писатель. Потому придумал некий сверхпрочный «псевдоодномерный алмазный кристалл», который стал основным строительным материалом. Один из героев романа, инженер Морган, поясняет, что такой кристалл не есть абсолютно чистый углерод, «тут есть дозированные микровключения некоторых элементов». И добавляет, что производство таких кристаллов возможно только в невесомости, где нет тяжести, нарушающей кристаллическую решётку.

Самое интересное, что Кларк почти угадал. Нынешний этап интереса к проекту строительства космического лифта связан именно с углеродными кристаллами, хотя и несколько иного вида.

В 1991 году японский инженер Сумио Иишима, исследуя графитовую сажу, открыл нечто удивительное — так называемые углеродные нанотрубки. Это микроскопические, не различимые невооружённым глазом плёночки графита, свёрнутые в виде крохотных цилиндров.

Диаметр каждой такой трубки в миллион раз меньше миллиметра, длина — всего нескольких микрон. Казалось бы, какой от них прок? Однако вскоре выяснилось, что цилиндрики могут самостоятельно сплетаться в такие же микроскопические канатики. Изготовленная же из них нить прочнее алмаза. Почти невесомая паутинка из углеродных нанотрубок диаметром в один миллиметр может выдержать 20-тонный груз!

Имея такой удивительный материал, можно уже и подумать о строительстве космического лифта в обозримом будущем.

Во всяком случае, после открытия японского инженера проектом занялись не только фантасты, но и учёные с инженерами. Скажем, Институт перспективных концепций НАСА выделил компании «Highlift Systems» 570 тысяч долларов на первоначальные исследования.

Ныне закончен первый этап исследований. В отчёте, включающем 80 страниц убористого текста, а также многочисленные чертежи и графики, сказано однозначно: проект вполне может быть осуществлён практически. Во всяком случае, один из его авторов, доктор Брэдли Эдвардс, твёрдо уверен в успехе. По его мнению, при соответствующем финансировании уже через два года можно будет начать строительство стартовых сооружений.

Причём осуществление этого проекта грозит обернуться немалой экономией средств. Дело в том, что ныне доставка 1 кг полезного груза в космос обходится не менее 10 тысяч долларов, причём подъём на высокую, геостационарную орбиту обходится даже в 40 тысяч. Космический подъёмник предполагает снижение стоимости доставки до 100 долларов, т.е. в 100–400 раз. И это только на первом этапе…

1 ... 79 80 81 82 83 84 85 86 87 ... 105 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название