Повседневная жизнь российских космонавтов
Повседневная жизнь российских космонавтов читать книгу онлайн
Книга, представленная на суд читателя в год пятидесятилетнего юбилея первого полета человека в космос, совершенного Ю. А. Гагариным, — не взгляд со стороны. Ее автор — удивительно разносторонний человек. Герой Российской Федерации, летчик-космонавт Ю. М. Батурин хорошо известен также как ученый и журналист. Но главное — он сам прекрасно знает увлекательный и героический мир, о котором пишет, жил в нем с середины 1990-х годов до 2009 года.
Книга, рассчитанная на широкий круг читателей, не только познавательна. Она поднимает острые вопросы, от решения которых зависит дальнейшая судьба отечественной космонавтики. Есть ли еще у России шансы преодолеть ухабы на пути к звездам или все лучшее осталось в прошлом? Прочитав книгу, вы сами сможете судить об этом.
Большинство цветных фотографий сделано автором в ходе тренировок и в космических полетах.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
После того как космонавты сообщат о своих наблюдениях за планктоном из космоса, по их данным будут составлены карты. Но здесь есть особенность. Ведь планктон может перемещаться, и составленная карта уже не будет отражать действительную картину. Поэтому этот эксперимент проводится регулярно еще с 1978 года. Именно тогда ученые разработали основные методы исследования, по которым сегодня работают космонавты. Эксперимент экономически выгоден, он не требует дорогостоящего оборудования, нужна для него всего лишь фото- и видеоаппаратура.
Космонавты смотрят, где больше пищи для рыбы, то есть планктона, и отмечают эти зоны на картах. Как космонавты могут определить, где скапливается планктон, ведь они находятся на расстоянии сотни километров от океана? Оказывается, планктон можно увидеть по его цвету и свечению. На планете известны тысячи видов животного мира, которые способны светиться, это — одноклеточные организмы, медузы, некоторые рыбы, даже акулы. Кто бывал на море, наверное, помнит, что ночью в воде мелькают какие-то огоньки. Это и есть планктон. Обычно он любит теплую воду и поэтому его местонахождение сильно не меняется. А температуру воды можно определить тоже по цвету. Одно и то же озеро бывает разных цветов, зимой — темно-синего, летом — зеленого.
Из космоса можно увидеть гораздо лучше то, что происходит в океане. Помимо свечения рыб и цвет а самой воды, водоросли бывают самых различных оттенков и видов. Все мы видели зеленые, желтые, красные водоросли. Некоторые из них могут дрейфовать (перемещаться) или иметь корни на подводных скалах. Но в основном водоросли не нуждаются в корнях, потому что питаются веществами из самой воды и могут впитывать еду всем своим «телом».
При визуально-инструментальных наблюдениях сложности вызывает даже биение сердца космонавта, что создает микротолчки, уводящие бинокль или видеокамеру от объекта наблюдения. Опытные космонавты не держат инструмент наблюдения в руках, а помещают его перед собой и регулируют его положение кончиками ресниц!
Космические эксперименты чрезвычайно дороги, поэтому готовить их нужно весьма тщательно. Главная особенность космического эксперимента — уникальное сочетание факторов космического пространства, влияющих на исследуемый процесс. Между тем опыт выполнения КЭ на орбитальном комплексе «Мир» и на МКС показал, что в них учитывается в основном фактор невесомости (микрогравитация). Ряд иных факторов, таких как корпускулярные потоки спокойного Солнца, радиовсплески на Солнце, параметры солнечного ветра, возмущения ионосферы и магнитосферы и другие, при проведении космических экспериментов обычно считаются пренебрежимо малыми или экранированными. Учет воздействия указанных факторов и возможных эффектов их нелинейного взаимодействия представляется существенно важным. Поэтому на смену методологии однофакторных экспериментов приходят комплексные исследования, учитывающие одновременное влияние совокупности различных факторов на исследуемый процесс, методы автоматизации эксперимента и методы планирования многофакторных экспериментов.
В связи с этим возрастает роль космонавта-исследователя. Современный космонавт-исследователь должен быть квалифицированным экспериментатором-универсалом. Разумеется, возможна и целесообразна некоторая специализация: эксперименты в области астрофизики существенно отличаются от медицинских экспериментов. Но современный космонавт-исследователь, выполняющий эксперименты на борту космической станции, — это в первую очередь опосредующее интеллектуальное звено, связывающее множество постановщиков экспериментов, оставшихся на Земле, со множеством приборов и экспериментальной аппаратурой на борту. Это своего рода диспетчер, несущий полную ответственность за то, чтобы его знания и навыки, а также установленное на борту научное оборудование находились в исправности и применялись максимально эффективно для проведения запланированных экспериментов.
Хорошим примером космического эксперимента, который начинался как однофакторный, а затем стал многофакторным, может служить эксперимент «Плазменный кристалл». Термином «плазменный кристалл» обозначаются упорядоченные структуры, состоящие из заряженных в плазме пылевых частиц микронного размера. Они аналогичны решетчатой структуре кристаллических материалов и характеризуются постоянной структурой решетки, составляющей, в отличие от параметра обычных кристаллов, доли миллиметра, что позволяет наблюдать их невооруженным глазом.
«Плазменный кристалл» начинался в 1998 году на станции «Мир» и непрерывно продолжается уже десять лет на борту МКС. Эксперимент проводится под руководством академика Российской академии наук Владимира Евгеньевича Фортова и профессора Грегора Морфилла (общество Макса Планка, Германия).
В космическом эксперименте «Плазменный кристалл» космонавт на борту МКС выполняет следующие операции: монтаж аппаратуры; вакуумирование магистралей и рабочей камеры экспериментального блока с помощью турбомолекулярного насоса; загрузка программного обеспечения для серии экспериментов в компьютер аппаратуры; собственно выполнение экспериментов серии; передача (по возможности) фрагментов видеоинформации по каждому эксперименту в ЦУП для проведения оперативного анализа; демонтаж аппаратуры; возврат на Землю с экипажем на ТК «Союз» видеокассет и видеокарт с результатами проведения экспериментов и передача их постановщикам экспериментов для анализа. Исходя из опыта КЭ «ПК», представляется, что кроме задач обслуживания научной аппаратуры, ремонта, установки режимов ее функционирования на экипаж могут быть также возложены задачи точного измерения уровней факторов, контроля их воздействия на ход исследуемых процессов, обнаружения непрогнозируемых эффектов в результате нелинейного взаимодействия факторов, предварительной оценки, когда это возможно, характеристик полученных материалов, отбор образцов для дальнейших исследований.
БЕЗДНА = БЕЗ ДНА
Первый выход в открытый космос. — Подготовка к выходу. — За люком — бездна. — Космический «мотоцикл». — НЛО
Первый выход в открытый космос
Выходом в открытый космос считается работа космонавта в космическом пространстве за пределами своего корабля. Первый выход в открытый космос был совершен нашим космонавтом Алексеем Архиповичем Леоновым. Это произошло 18 марта 1965 года, когда был запущен второй космический корабль «Восход», пилотируемый космонавтами Павлом Ивановичем Беляевым и Алексеем Архиповичем Леоновым. Уже через полтора часа после старта, в начале второго витка, Алексей Леонов первым в мире вышел в открытый космос. Командир Павел Беляев сообщил по радио: «Внимание! Человек вышел в космическое пространство! Человек вышел в космическое пространство!»
Чтобы технически осуществить это беспримерное дело, придумали дополнительную шлюзовую камеру. Сначала закрытая изнутри и снаружи, она заполнялась воздухом, затем открывался внутренний люк и космонавт заходил в основную часть корабля. Самое интересное, что сама шлюзовая камера была надувная, как матрас для плавания. Она располагалась вне космического корабля. При выходе на орбиту камера сворачивалась и находилась под обтекателем корабля. А после выхода в космос, перед спуском на Землю основную часть камеры отсоединяли и корабль входил в плотные слои атмосферы в обычном виде.
Во время наземной подготовки Леонова в самолете-лаборатории установили макет космического корабля со шлюзовой камерой в натуральную величину. Леонов отрабатывал движения выхода в открытый космос, отход от корабля и возвращение. На один только навык плавного отхода от корабля Леонову потребовалось шесть попыток Сначала не удавалось удерживать равновесие, движения были резкие. Чтобы подойти обратно к кораблю, тоже пришлось попотеть. Космонавт постоянно вращался, поворачивался к входу спиной, двигался рывками. Кроме того, скафандр сковывал движения, мешал. Зато потом все эти упражнения помогли Леонову в космическом полете.