Гринвичское время и открытие долготы
Гринвичское время и открытие долготы читать книгу онлайн
Английский ученый Дерек Хауз в популярной форме рассказывает о многовековой истории постижения человеком понятий астрономического времени и долготы, о поисках способов наиболее точного измерения этих величин и ведущей роли, которую сыграла в этих исследованиях всемирно известная Гринвичская обсерватория, давшая свое имя нулевому меридиану. Написанная живо и увлекательно, богато иллюстрированная, книга Д. Хауза предназначена для широких кругов читателей, интересующихся историей науки и техники.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Нужды военного времени, прежде всего развитие радиолокационной техники и точных систем воздушной навигации, требовали от английской службы времени десятикратного увеличения точности радиосигналов времени. Поэтому в 1942 г. было достигнуто соглашение с отделом радио почтового управления о ежедневных передачах в Абинжер сигналов времени, показываемого кварцевыми часами, принадлежащими управлению. Это нововведение оказалось настолько успешным, что позволило в 1943 г. изъять часы Шорта из группы, образующей «средние часы». Кварцевые часы, ошибки которых определялись из астрономических наблюдений, проводившихся в Абинжере и Эдинбурге, стали первичным эталоном, на котором базировалась служба времени, тогда как часы обсерватории использовались в качестве вторичного стандарта для контроля сигналов времени. В 1944 г. контроль международных сигналов времени, передававшихся из Регби, как и позднее, в 1949 г., шеститочечных сигналов Би-би-си, осуществлялся с помощью новых кварцевых часов в Абинжере. Служба времени в Эдинбурге прекратила свое существование в январе 1946 г. и вскоре шесть принадлежащих ей кварцевых часов были переданы Гринвичской обсерватории; однако штаб-квартира службы времени по-прежнему оставалась в Абинжере, имевшем двенадцать кварцевых часов. К этому времени точность таких часов возросла до 0,1 мс в сутки. Между тем астрономы устремились прочь от смога и уличных огней Гринвича, мешавших наблюдениям, к прозрачному воздуху Хёрстмонсо, расположенному в графстве Сассекс, куда в 1957 г. переместилась из Абинжера и служба времени [1].
Увеличение точности хранения времени позволило заострить внимание на другой проблеме, которую десятый королевский астроном Харольд Спенсер Джонс резюмировал в 1950 г. следующим образом:
«Вращающаяся Земля обеспечивает нас фундаментальной единицей времени - сутками. Первое требование к любой фундаментальной единице - ее постоянство и воспроизводимость; единица должна означать одно и то же для всех людей и во все времена. При принятии суток, или, более точно, средних солнечных суток за фундаментальную единицу, из которой в качестве производных мы получаем час, минуту и секунду, следует безоговорочно предположить, что ее длина неизменна, другими словами, что Земля является совершенным хранителем времени» [2].
То, что Земля не является совершенным хранителем времени, отметил еще Иммануил Кант в 1754 г., но, чтобы представить полную историю этого вопроса, мы должны перенестись еще на шестьдесят лет назад. В 1695 г. Эдмунд Галлей, анализируя затмения, происходившие в древние времена, пришел к выводу, что движение Луны вокруг Земли ускоряется; позже это было подтверждено непосредственными измерениями. В 1787 г. Лаплас показал, что это явление можно объяснить медленными изменениями формы орбиты Земли, но в 1853 г. Адаме отметил, что изменения орбиты позволяют только наполовину объяснить видимую величину лунного ускорения. После долгих научных споров было окончательно доказано, что на основе теории тяготения Лапласа нельзя полностью объяснить ускорение движения Луны - это можно сделать, лишь допустив, что Земля в своем вращении постепенно замедляется в значительной степени из-за трения, обусловленного приливными эффектами.
70. Часы Шорта со свободным маятником 16 (главные и вторичные часы) в Гринвиче (около 1930 г.), контролировавшие сигналы времени в период 1927-1940 гг. (Национальный морской музей.)
Сегодня мы знаем, что существует три вида изменений в скорости вращения Земли, первые два из которых известны благодаря изучению движений Луны и планет, а последний был качественно обнаружен при помощи часов со свободным маятником и определен количественно с появлением кварцевых часов:
1) вековые изменения - постепенное замедление, обусловленное действием лунных и солнечных приливов, вследствие которого продолжительность земных суток увеличивается на 1,5 мс за столетие;
2) нерегулярные (или непредсказуемые) изменения, по всей видимости, вызываемые различием в скоростях вращения жидкого ядра и твердой мантии Земли, которые могут приводить к увеличению или уменьшению продолжительности суток на 4 мс за десятилетие;
3) сезонные вариации, отражающие сезонные изменения в мировом океане и воздушных массах Земли. Примером этого может служить таяние и замерзание полярных ледяных шапок и движение воздушных масс из обширных областей высокого атмосферного давления, существующих зимой в Сибири, на территории с высоким давлением летом. Земля вращается медленнее весной и в начале лета и быстрее - осенью. В результате колебания в продолжительности дня могут достигать 1,2 мс.
Существует еще одно явление, которое, хотя оно и не воздействует на скорость вращения Земли, необходимо учитывать при точном хранении времени. Это колебания полюса, или перемещение тела Земли относительно оси вращения (подобно качающемуся в механизме подшипнику), заставляющие блуждать полюса Земли приблизительно с 14-месячным периодом в пределах окружности радиусом около 8 м. Эффект колебаний полюса изменяет географические широту и долготу любого места на Земле (в чем удалось убедиться с помощью астрономических наблюдений), а это из-за изменения долготы приводит к соответствующим изменениям шкалы времени в каждом пункте на земной поверхности.
71. Покоящийся спуск
Как указал Спенсер Джонс, первое требование к фундаментальной единице - ее постоянство и воспроизводимость. Поэтому к 1950-м гг. секунда, основанная на вращении Земли, изменяющая, хотя и незначительно, свою продолжительность, перестала удовлетворять предъявляемым к ней требованиям. Возник вопрос: что же делать дальше?
Первоначально было решено отказаться от солнечных суток как фундаментальной единицы времени и вместо них пользоваться годом, продолжительность которого, хотя и не постоянна, но может быть заранее вычислена с учетом ее уменьшения приблизительно на полсекунды в столетие. Это привело к введению в международной практике в 1952 г. для некоторых целей новой шкалы времени - эфемеридного времени (ЕТ), которое стали использовать - о чем говорит уже само его название - для составления различных национальных эфемерид и ежегодников. Как мы уже говорили в предыдущей главе, в результате решения Вашингтонской конференции 1884 г. и специальных рекомендаций Международного астрономического союза, принятых в 1928 г., гринвичское время стало называться всемирным временем (UT). Поэтому далее в этой главе, когда речь пойдет о среднем солнечном времени гринвичского меридиана, мы будем оказывать предпочтение названию UT, а не GMT. Сейчас UT, основанное на вращении Земли вокруг своей оси, задает шкалу времени, необходимую для астронавигации. Но, как мы уже отмечали, скорость вращения Земли меняется, поэтому в 1956 г. для специальных потребностей служб времени возникла необходимость в более точном определении UT:
UT-среди ее солнечное время нулевого меридиана, полученное непосредственно из астрономических наблюдений;
UT1 - это UT с поправками на движение полюса (не более чем на 0,035 с). Шкала UT1 используется для астронавигации;
UT2 - это UT с поправками на движение полюса и на экстраполированные изменения в скорости вращения Земли (также не более чем на 0,035 с). UT2 - «сглаженная» шкала времени, задающая по возможности равномерное время. До 1972 г. эта шкала была основой сигналов времени [3].
Вопрос о шкале ЕТ и ее связи с UT слишком сложен, чтобы его рассматривать здесь. Достаточно сказать, что ЕТ довольно близко соответствует UT, поскольку продолжительность эфемеридных суток задается продолжительностью средних солнечных суток в XIX в. В 1956 г. специалисты отказались от использования средних солнечных суток в качестве международной фундаментальной единицы времени в пользу эфемеридной секунды, определенной как «1/31556925,9747 доля тропического года 0 января 1900 г. в 12 ч эфемеридного времени» [4].