Читая каменную летопись Земли...
Читая каменную летопись Земли... читать книгу онлайн
Не зная прошлого, невозможно предугадать будущее. Этот тезис вполне применим и к нашей планете. Наступившие уже изменения климата, в частности глобальное его потепление, заставляют ученых внимательнее вглядываться в каменную летопись Земли, вчитываться в очень древние и в сравнительно недавно написанные природой страницы. О мире камня, окружающем нас, об отношении к нему человека на разных этапах становления цивилизации, о камнях-амулетах и камнях-лекарствах, об осадочных породах, хранящих богатейшую информацию о прошлом нашей планеты, рассказывает эта книга. В ней также воссоздан ряд ярких эпизодов из сложной и противоречивой геологической истории нашего общего дома — Земли.
Верхняя, осадочная оболочка Земли — это не только средоточие разнообразных полезных ископаемых, но и каменная летопись, читая которую мы сможем познать далекое прошлое нашей планеты и предсказать ее будущее.
Научно-популярное издание.
Для широкого круга читателей, интересующихся историей нашей планеты.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Интересно, что в глубоководных условиях, главным образом на подножии континентальных склонов и в абиссальных котловинах океана, уплотнение многих осадков, в первую очередь глинистых, происходит гораздо медленнее, чем на континенте или на его подводном продолжении, хотя на осадок здесь давит огромный столб воды (4–6 тыс. даже 8-10 тыс. м, что соответствует 400-1000 атм). Превращение осадка в породу завершается в этих условиях на гораздо больших глубинах в недрах осадочного чехла: 1200–1500 м вместо 500–800 м на континентах. Описываемое явление получило название парадокса глубоководного диагенеза. Оно объясняется несколькими причинами, в частности затрудненностью оттока выдавливаемых из осадков седиментационных вод, так называемым взвешивающим эффектом и др. Важно отметить, что благодаря незавершенному диагенезу в океане встречаются очень древние осадочные образования, в том числе мелового и даже позднеюрского возраста (140-80 млн лет), которые все еще не преобразовались в породу. Такой феномен неизвестен на суше.
Пора зрелости
Осадок, став камнем, приобретает новые черты. У юноши в период возмужания появляются усы и борода, а вот в песках, еще недавно сыпучих и рыхлых, Армируется цемент. Благодаря ему они становятся породой — песчаником. В качестве цемента часто образуется кальцит, кристаллы которого вырастают в порах между зернами терригенных минералов в результате выпадения карбоната кальция из воды, постоянно мигрирующей по песчаникам. В недрах они служат коллекторами — проводниками флюидов. Формирование карбонатного цемента — это прелюдия к целой цепи превращений, происходящих в песчаниках в пору зрелости. К наиболее значительным относятся: новообразование глинистых минералов, вырастающих в крупных порах; разложение неустойчивых компонентов, например полевых шпатов, и коррозия кварцевых зерен; вдавливание этих зерен одно в другое на контактах; наконец, появление каемок обрастания вокруг кварцевых зерен. Изучение этих явлений важно потому, что все они влияют на структуру порового пространства, ведь песчаники служат коллекторами не только воды, но также нефти и газа.
Изменения, наблюдающиеся в песчаниках, алевролитах и других обломочных породах, во многом обусловлены процессами, протекающими в их постоянных спутницах — глинах. Правда, глины, как разборчивые невесты, отдают иногда предпочтение известнякам или кремнистым породам. А вот песчаники с этими породами встречаются относительно редко. Так что песчаникам и глинам волею судьбы приходится сосуществовать. Глинам в этом союзе принадлежит главная роль. В зрелую пору песчаники явно находятся «под каблуком» у глин. Впоследствии распределение ролей между ними несколько меняется.
Глины, став породой, приобретают особую функцию, в чем-то сравнимую со способностью всего живого к деторождению. Многие из них, но далеко не все, при определенных обстоятельствах способны генерировать углеводороды, как жидкие (нефтяные), так и газообразные. Недаром геологи-нефтяники называют глины нефтематеринскими породами. Речь, конечно, идет о глинах, изначально обогащенных органическим веществом, иначе говоря, углеродистыми остатками растений и животных, содержащими как извлекаемые (фульво- и гуминовые кислоты, битумоиды), так и не извлекаемые растворителями компоненты. Последние названы керогеном, В его состав входят аминокислотные остатки, нуклеотиды, жирные кислоты, фрагменты клеточных мембран, в том числе целлюлоза, гемицеллюлоза и хитин. Органические соединения располагаются между чешуйками глинистых минералов и зачастую образуют с ними сложные органо-минеральные комплексы. Из них-то при определенных условиях и образуются углеводороды.
Способность глин генерировать микронефть не в последнюю очередь связана с выделением при катагенезе больших количеств воды, находящейся в особом переуплотненном состоянии, близком к состоянию жидкого кристалла. Как уже указывалось выше, вода эта заключена в межслоевых промежутках слоистых силикатов глин и в отличие от седиментационных вод, занимающих поры в осадке или породе, является чистой в химическом отношении. Это очень важное обстоятельство, ибо такая вода, да еще разогретая в недрах до температуры в несколько десятков, а то и до 100–150 °C, оказывается весьма агрессивным химическим агентом, обладающим повышенной растворяющей способностью.
Межслоевая вода образует своего рода слои близ поверхности трехэтажных пакетов разбухающих разностей глинистых минералов и связана с ней, а также с межслоевыми катионами определенными связями. Поэтому она очень устойчива по отношению к геостатическим нагрузкам и остается в межпакетных промежутках даже при давлении в несколько сот атмосфер. Нарушение структуры межслоевой воды вызвано повышением температуры в недрах. Известно, что, чем дальше в глубь земной коры, тем выше температура. В одних районах это повышение, называемое геотермическим градиентом, составляет всего 1–2° на 100 м, в других — на порядок выше. Геотермический градиент определяется тектонической активностью литосферы. На платформах он невелик, в передовых прогибах и меж-горных впадинах горно-складчатых областей обычно значительно выше. Но особенно резко с глубиной погружения осадков температура возрастает в районах рифтогенеза или раскрытия океанского дна. Например, в осадках Красноморского рифта уже на глубинах 0,3–0,5 км от поверхности дна температура, вероятно, достигает 80-100 °C. Отсюда следует, что одна и та же температура в разных регионах должна фиксироваться в совершенно различных диапазонах осадочного чехла.
Критической для межслоевой воды температурой считается 80-100 °C (до 120 °C). Упорядоченная структура этой воды разрушается, и она выходит из межслоевых промежутков в микропоры, еще сохранившиеся в глинистой породе. К этому времени они частично или полностью забиты вторичными минеральными образованиями или молекулами органического происхождения. Вода растворяет наименее устойчивые компоненты и выделяется из глины в песчаники или алевролиты. По ним она мигрирует в область разгрузки, где пополняет запасы грунтовых вод либо выходит на поверхность в виде родников и источников. По пути наверх из воды выделяются те минеральные фазы, которые были растворены в микропорах глинистой породы. Образуются и другие минералы. Поэтому пустотное пространство песчаников и других зернистых пород становится ареной новообразований. Здесь в микроскопических формах происходят, по существу, те же процессы, что и в подземных карстовых пещерах, где вырастают сталактиты и сталагмиты. Микрокристаллы и агрегаты минералов формируются в порах на путях миграции флюидов. Это удлиненно-пластинчатые иллиты и смектиты, прекрасно окристаллизованные шестигранные пластинки каолинита, которые наложены одна на другую и напоминают стопки монет. Реже встречаются веретеновидные сростки вермикулита, зато широко распространены яснокристаллический кальцит, ромбоэдры доломита, а вблизи границы раздела глина-песчаник выделения пирита, сидерита и других железистых минералов.
Случается и обратное. Чистая и агрессивная в химическом отношении межслоевая вода растворяет различные минеральные фазы в составе цемента. Может наблюдаться и коррозия породообразующих минералов — полевых шпатов, кварца и слюд. Возникающее при этом дополнительное поровое пространство называется вторичной пористостью.
Не менее фундаментальные превращения происходят в глинистых породах. По мере удаления межслоевой воды часть трехслойных пакетов со структурой смектита теряет способность к разбуханию. Эта перестройка сопровождается довольно сложными замещениями как в кристаллической решетке (часть кремния в тетраэдрах замещается алюминием), так и в межслоевых промежутках, где место кальция и натрия постепенно занимает калий. Он-то и стягивает «намертво» соседние пакеты. В промежутки, где засел К+, уже не могут проникнуть ни вода, ни тяжелые органические молекулы. В результате возникают минеральные структуры с промежуточными свойствами: хотя часть трехэтажных пакетов еще не утратила способности набухать, другие уже жестко сцеплены друг с другом. Подобные минералы, называемые смешанослойными, широко распространены в глинах на стадии катагенеза. По мере погружения в недра в их составе все больше увеличивается количество неразбухающих пакетов, построенных по типу иллита, и уменьшается доля разбухающих смектитовых разностей. К моменту завершения катагенетической стадии эволюции осадочных пород из глинистых образований полностью исчезают разбухающие фазы, а каолинит начинает превращаться в диккит.