Читая каменную летопись Земли...
Читая каменную летопись Земли... читать книгу онлайн
Не зная прошлого, невозможно предугадать будущее. Этот тезис вполне применим и к нашей планете. Наступившие уже изменения климата, в частности глобальное его потепление, заставляют ученых внимательнее вглядываться в каменную летопись Земли, вчитываться в очень древние и в сравнительно недавно написанные природой страницы. О мире камня, окружающем нас, об отношении к нему человека на разных этапах становления цивилизации, о камнях-амулетах и камнях-лекарствах, об осадочных породах, хранящих богатейшую информацию о прошлом нашей планеты, рассказывает эта книга. В ней также воссоздан ряд ярких эпизодов из сложной и противоречивой геологической истории нашего общего дома — Земли.
Верхняя, осадочная оболочка Земли — это не только средоточие разнообразных полезных ископаемых, но и каменная летопись, читая которую мы сможем познать далекое прошлое нашей планеты и предсказать ее будущее.
Научно-популярное издание.
Для широкого круга читателей, интересующихся историей нашей планеты.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Эта «воинственность» обусловлена свойствами песчаных частиц, прежде всего их устойчивостью к истиранию и малым весом. Последнее обстоятельство делает возможным их перемещение не только волоком, как большинство других крупных частиц, но и в виде взвеси. Другими словами, они поднимаются потоком над ложем, на короткое время оказываясь взвешенными в воде. Им доступен и совсем уже экзотический способ перемещения — сальтация: песчинки как бы совершают небольшие прыжки после соударения. Сальтация возможна как в воздушной, так и в водной среде. Сальтирующие частицы создают ковер летящих зерен, способных покрыть значительные расстояния. От таких прыжков, вызванных соударением, на поверхности песчаных зерен появляются вмятины и дырочки. Однако разглядеть их удается только в поле сканирующего электронного микроскопа. Ведь размерность песчаных зерен от 0,1 до 1 мм, и требуются большие увеличения, чтобы исследовать их поверхность.
Пески разнообразны по составу. Наиболее частым их компонентом является кварц — удивительно стойкий в условиях земной поверхности минерал, выдерживающий воздействие как физических, так и химических факторов выветривания. Прозрачные и полупрозрачные зерна кварца в поле бинокулярной лупы похожи на кусочки хрусталя. Поверхность многих кварцевых зерен — увлекательный объект исследования. Она хранит шрамы — следы перемещений зерен бурным водным потоком, а также оспины и выемки, оставшиеся от их соударений. Зерна могут носить и своеобразную рубашку из оксидов железа, называемую, как уже говорилось, «пустынным загаром». Другие компоненты, обычные для песка, были описаны выше.
Песчинки, попав в новую для них среду, нередко обретают яркий наряд. Они способны обрастать лептохлоритом — зеленым железистым минералом или одевать черную рубашку, состоящую из вещества фосфатной природы, или пирита. Очень часто песчинки обрастают карбонатом кальция, как бы облачаются в многослойные наряды и переливаются многоцветьем радуги. Размер таких песчинок — их называют оолитами — возрастает в несколько раз. Они даже могут перейти в другой разряд, в класс гравийных частиц.
Однако чаще всего песчаным зернам уготована другая судьба. Истираясь и дробясь в многочисленных столкновениях, они уменьшаются в размерах и опускаются по иерархической лестнице на следующую ступень, в разряд алевритов. Эти частички размером от 0,01 до 0,1 мм обладают другими свойствами и иной судьбой. В сообществе обломочных частиц они никак себя не проявляют. Алевритовые зерна присутствуют в любом осадке, но редко формируют «чистую», т. е. состоящую из частиц только данной размерности, породу. Будучи в примеси, они выполняют роль балласта или наполнителя, забивая крупные поры и мелкие трещины. Они не воители, как песчаные зерна, и не созидатели, каковыми являются глинистые частицы. Однако, собравшись в огромную массу, алеврит способен создавать плодороднейшие почвы — лёссы. На лёссах Великой Китайской равнины зародилась и успешно развивалась одна из древнейших земледельческих цивилизаций мира. Лёссы образуются на границах аридных и гумидных зон в полосе полупустынь, куда выносится ветрами, дующими из соседней пустыни, алевритовый материал — тончайшие зерна кварца, полевых шпатов и слюд. В условиях активного химического выветривания эти зерна частично разлагаются. При этом высвобождаются химические соединения, благотворно влияющие на рост растений.
Из-за малого веса многим алевритовым частицам уготована судьба скитальцев. Это они во время пыльных бурь в Сахаре переносятся ветрами через Атлантический океан, попадая в специальные ловушки, устанавливаемые на Багамских островах и во Флориде. Поднявшись в верхние слои воздушной оболочки, алевритовые частицы вместе с тропосферными вихрями огибают по нескольку раз земной шар. Наряду с тонкой пелитовой взвесью они находятся в составе нефелоидных обвалов в водной толще океана, а у его дна их переносят мутьевые и придонные течения на огромные расстояния. Алеврит заполняет мелкие промоины и бороздины на дне либо образует аккумулятивные валы на границе континентального подножия с абиссальными равнинами океана.
Странная судьба у алеврита. Он может измельчиться до состояния крупного пелита, а затем и вовсе исчезнуть. Большинство алевритовых зерен разлагается, давая начало простейшим химическим соединениям: SiO2, AI2O3, FeO3 и др. А уже из них образуются частицы, составляющие последний и самый многочисленный класс — пелиты (‹0,01 мм) которые в группе обломочных частиц, по-видимому, на 90 % представлены агрегатами глинистых минералов.
Если сравнивать гранулометрические классы осадочных частиц с ранними людскими сообществами, то пелитовые частицы, лежащие в основании гранулометрической пирамиды, можно сопоставить с самым многочисленным их пластом — классом земледельцев. И в этом есть глубокий смысл: ведь глинистое тонкодисперсное вещество составляет каркас разнообразных почв. Глинистые чешуйки вездесущи. Они встречаются во всех обстановках — в воде, в воздухе и на дне океана. В отличие от алевритовых и других обломочных частиц, никак не сцепливающихся друг с другом, чешуйки глин способны слипаться и образовывать более крупные агрегаты. Таким образом они лучше противостоят воздействию различных механических и химических агентов.
Другие персонажи
В природе распространены не только обломочные частицы. Другая, самая разнообразная их группа порождена жизнью. Многообразие ее форм находит отражение в структуре этой группы. В нее входят карбонатные, кремнистые и углеродистые остатки различных организмов, живших в разных средах — на поверхности суши, в реках, озерах, болотах, морях, в различных зонах океана. При этом карбонатные и кремнистые остатки имеют для геолога особую значимость, так как в них фиксируются прижизненные черты обитавших в ту или иную эпоху животных и микроорганизмов.
Органический мир находится в непрерывном развитии, и новые формы в меняющихся условиях среды обитания вытесняли (и вытесняют сейчас) архаичные и нежизнеспособные виды, постепенно, а то и очень резко изменяя облик био- и танатоценозов. Однако и новые формы не вечны. С течением времени они также сходят со сцены, оставляя как память о себе раковины, скелетные фрагменты минерального каркаса, прижизненные отпечатки в осадочных породах. Наиболее характерные из подобных остатков становятся символами временного интервала, в котором жили их хозяева.
Впрочем, хорошо сохранившиеся палеонтологические остатки — символы или «метки» своего времени, встречаясь в изобилии в одних слоях осадочного разреза, зачастую совершенно отсутствуют в других. Хороший образец древней фауны сродни княжескому захоронению в степном кургане: оно одно на тысячи других, безвестных могил. Так же обстоит дело с остатками карбонатстроящих и других древних организмов. Огромные их массы, скопившиеся на ограниченном пространстве, могут в силу плохой сохранности не нести значительной научной информации. Однако ими сложены пласты и толщи органогенных пород, которые скрыты в недрах осадочных бассейнов либо выступают в виде горных хребтов. Они интересны тем, что способны вмещать залежи фосфоритов и бокситов, различных металлов, а главное, скопления нефти и газа.
Жизнь пронизывает всю поверхностную оболочку Земли. Здесь также выстраивается своя пирамида. В водной среде в ее основании находятся мельчайшие фотосинтезирующие организмы (планктон), защищающие свои тела кремнистой или карбонатной оболочкой. Именно их остатки микронных и субмикронных размеров, попадающие в алевритовую и пелитовую фракции, составляют основную массу органогенных частиц, взвешенных в водной толще морей и океанов. Они либо растворяются при опускании на дно, либо образуют рыхлые осадки.
Поражают многообразие форм, неистощимость выдумки природы. Рассмотрим для примера группу диатомей и радиолярий. Эти мельчайшие кремнестроящие организмы обитают в поверхностных водах не только океана, но и пресноводных озер, осолоненных лагун, других водоемов. Некоторые из них можно встретить даже в поде одиноких колодцев, разбросанных в пустыне: идеальные сферы с шиповидными отростками, изящные рюмочки, перевернутые ножкой вверх, разнообразные шлемы и кубки, мыльницы и т. д. Эти формы позволяют их владельцам выжить в конкурентной борьбе за пищу и пространство. Не менее удачным дизайном отличаются те многокомнатные плавающие «квартиры» фораминифер, которые они строят в течение всей своей жизни, предпочитая кремнезему карбонатный материал. В этом микромире есть свои карлики и настоящие гиганты. К числу последних можно отнести птеропод, чьи арагонитовые раковинки с игольчатыми выступами, напоминающими антенны, видны невооруженным глазом. Птероподы — типичные обитатели средиземноморских карбонатных илов (их размер от 0,3 до 1 см).