Законы движения
Законы движения читать книгу онлайн
Книга М. Ивановского «Законы движения» знакомит читателей с основными законами механики и с историей их открытия. Наряду с этим в ней рассказано о жизни и деятельности великих ученых Аристотеля, Галилея и Ньютона.
Книга рассчитана на школьников среднего возраста.
Ввиду скоропостижной смерти автора рукопись осталась незаконченной. Работа по подготовке ее к печати была проведена Б. И. Смагиным. При этом IV, V, VI и VII главы подверглись существенной переработке. Материал этих глав исправлен и дополнен новыми разделами.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Действенность закона
Любая спортивная игра с мячом — будь то волейбол, футбол, баскетбол или теннис — дает множество наглядных примеров действенности второго закона движения. Каждая из этих игр как раз и состоит в том, чтобы применением силы заставлять мяч все время менять скорость и направление движения. А искусство хорошего игрока проявляется именно в умелом использовании законов движения, для того чтобы загнать мяч туда, куда требуют правила и цель игры.
Как в играх, так и в повседневной жизни и технике люди стараются иметь второй закон движения своим другом и союзником, а не врагом.
На аэродромах на высоком шесте развевается большой конус, сшитый из белой или яркой полосатой материи. Ветер надувает его и заставляет поворачиваться, как флюгер. Полосатый конус, хорошо видимый сверху, указывает летчикам направление ветра.
Аэродромный флюгер.
На полевых аэродромах, где нет конуса-указателя, в ожидании посадки самолета зажигают дымные костры и выкладывают условный посадочный знак — большую цветную букву «Т» — опять-таки для того, чтобы показать летчику направление ветра.
Летчику необходимо знать, откуда дует ветер, потому что взлетать и приземляться самолеты могут только против ветра, — иначе второй закон движения окажется врагом самолета. При взлете встречный ветер помогает самолету подняться в воздух, сокращая разбег, а при спуске он тормозит движение самолета, облегчая посадку. Если же ветер, особенно порывистый, дует сбоку или сзади, то в обоих случаях, и при взлете и при посадке, может случиться авария — порыв ветра бросит самолет набок или опрокинет его, то есть под действием внешней силы произойдет непредвиденное и нежелательное изменение скорости и направления движения самолета.
Зная второй закон Ньютона, легко и просто объяснить загадку частичной потери веса, которую испытывает человек на качелях, в самолете, попавшем в «воздушную яму», и т. д.
Вот опускается высотный лифт. Первую часть пути он движется ускоренно. И вес пассажира, его давление на пол уменьшается. Часть силы притяжения Земли расходуется теперь на то, чтобы изменить скорость человека, спускающегося в лифте, увеличить ее. Поэтому давление его на пол кабины уменьшается.
Точно так же можно объяснить, что происходит с пассажирами самолета, попавшего в «воздушную яму», с ребенком на качелях, с пилотом космического корабля. Во всех этих случаях происходит частичная потеря веса, а при свободном падении — с ускорением силы тяжести — вес теряется полностью. Так просто объясняется загадочная потеря веса, которая столько времени мучила ученых.
Пойманная пуля
В дни первой мировой войны во французских газетах промелькнуло удивительное сообщение: летчик ухитрился поймать немецкую пулю рукой, как муху! Дело обстояло будто бы так: самолет летел над немецкими позициями на высоте примерно двух километров. Летчик заметил, что возле него движется какой-то маленький черный предмет. Пилоту показалось, что это шмель или жук, и он схватил его рукой, но, когда разжал ладонь, увидел на ней немецкую винтовочную пулю.
Насколько правдив этот рассказ — неизвестно. Но пуля, выпущенная из винтовки вдогонку самолету, на высоте двух километров находится, как говорится, на излете — ее скорость может сравняться со скоростью самолета. Самолеты же в 1915 году летали довольно медленно. Поэтому в происшествии, рассказанном французским летчиком, нет ничего сверхъестественного и невероятного. Он мог поймать пулю рукой, потому что сила тяжести и сопротивление воздуха уже успели поглотить ее скорость.
Не только пуля — любой предмет, подброшенный вверх, постепенно теряет скорость. От хорошего удара лаптой мяч взвивается «свечой» и летит высоко-высоко. По первому закону движения мяч, получивший толчок, должен лететь по прямой линии и с постоянной скоростью. Но так он полетел бы где-нибудь в межзвездном пространстве, а на Земле, где действует сила тяжести и сопротивление воздуха, движение мячика замедляется. Достигнув наивысшей точки, он на миг останавливается, а потом начинает падать.
При полете мяча вверх на него действовали направленные вниз силы тяжести и сопротивления воздуха. Их равнодействующая, их сумма, — причина замедленного движения мяча.
А когда он падает на землю, сила тяжести направлена по-прежнему вниз, а вот сила сопротивления воздуха — вверх. Ведь она препятствует движению. В этом случае, когда силы направлены противоположно, равнодействующая — их разность.
Мяч летит вверх — силы складываются, вниз — вычитаются.
Значит, до наивысшей точки подъема он долетит быстрее, чем упадет на землю.
Но часто сопротивлением воздуха можно пренебречь— тогда, например, когда тело поднимается невысоко. В этом случае силы сопротивления, зависящие от скорости, гораздо меньше силы тяжести. И поэтому приближенно считают время полета тела вверх и время падения его вниз одинаковыми.
СИЛЫ ТРЕНИЯ
Глава пятая
о вековечных спутниках всякого механического движения — спутниках иногда вредных, иногда нужных и важных, без которых невозможно движение на Земле
Семейство помех
Сил-помех, замедляющих движение, довольно много — целое «семейство»! Эти силы играют огромную роль в технике и вообще в нашей жизни — они вековечные спутники механического движения, и во многих случаях спутники недружественные, которые как бы цепляются за каждый предмет, стараются его остановить, мешают ему двигаться или заставляют свернуть в сторону. Это всевозможные силы сопротивления.
Всему движущемуся в воздухе мешает сопротивление воздуха.
Всему движущемуся в воде и по воде мешает сопротивление воды.
Между полозьями саней и дорогой, между коньками и льдом, между шейками валов и подшипниками возникают силы трения скольжения.
Между колесами и дорогой или рельсами действуют силы трения качения.
И даже когда предмет неподвижен, можно обнаружить силу трения покоя, которая как бы охраняет его неподвижность и мешает нам, если мы пытаемся этот предмет сдвинуть с места. Чтобы сдвинуть предмет, надо преодолеть эту силу.
Трение покоя удобно для нас тем, что оно не позволяет вещам под влиянием слабых толчков сползать и сдвигаться со своих мест. Но оно становится одной из самых вредных помех, когда приходится приводить тела в движение. При движении трение обычно сказывается меньше.
Французский ученый Кулон придумал простой прибор для определения трения покоя между различными поверхностями. На гладкую скамейку он клал доску, привязывал к ней веревку, а на доску клал гирю, прижимающую ее к скамье. Веревка перекидывалась через блок, укрепленный на конце скамьи, и к ее концу подвешивалась чашка от весов. На чашку Кулон накладывал постепенно одну за другой гирьки; сила их тяжести через блок тянула доску вдоль скамьи.
Прибор Кулона для изучения трения покоя.
Оказалось, что доска начинала двигаться только тогда, когда вес гирек оказывался достаточным для преодоления трения покоя — при меньших грузах она оставалась неподвижной, несмотря на тягу веревки. Чем тяжелее был груз, который прижимал доску к скамье, тем больше нужно было положить на чашку гирек, чтобы сдвинуть доску с места, — тем больше было трение покоя.
Хитрость машиниста
На станциях железных дорог иногда приходится наблюдать, как паровоз безуспешно старается стронуть поезд с места. И странно, этот же самый паровоз недавно мчал поезд со скоростью свыше сорока километров в час, успешно втаскивал его на подъемы, а как только остановился, все вагоны как будто сделались гораздо тяжелее.