Читая каменную летопись Земли...
Читая каменную летопись Земли... читать книгу онлайн
Не зная прошлого, невозможно предугадать будущее. Этот тезис вполне применим и к нашей планете. Наступившие уже изменения климата, в частности глобальное его потепление, заставляют ученых внимательнее вглядываться в каменную летопись Земли, вчитываться в очень древние и в сравнительно недавно написанные природой страницы. О мире камня, окружающем нас, об отношении к нему человека на разных этапах становления цивилизации, о камнях-амулетах и камнях-лекарствах, об осадочных породах, хранящих богатейшую информацию о прошлом нашей планеты, рассказывает эта книга. В ней также воссоздан ряд ярких эпизодов из сложной и противоречивой геологической истории нашего общего дома — Земли.
Верхняя, осадочная оболочка Земли — это не только средоточие разнообразных полезных ископаемых, но и каменная летопись, читая которую мы сможем познать далекое прошлое нашей планеты и предсказать ее будущее.
Научно-популярное издание.
Для широкого круга читателей, интересующихся историей нашей планеты.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Разнообразные и причудливые по форме постройки создают цианобактерии на побережье залива Шарк в Западной Австралии, где они занимают обширную прибрежную полосу вплоть до зоны, заливаемой только при максимальном приливе. Хотя эти площадки защищены барами от океанской зыби, штормовые волны все же воздействуют на водорослевые постройки. Под влиянием волн и отливных течений одни из них приобретают гладкую и приплюснутую форму (нижняя часть приливной зоны), другие становятся похожими на столбы, выступающие из воды во время отлива. Эти образования, напоминающие рифы, затрудняют высадку с лодок на берег. В верхней, редко заливаемой части береговой зоны распространены бугорчатые подушки со следами явной деградации. Как считают многие исследователи, в лагуне Шарк воспроизведены условия, существовавшие 1–1,5 млрд лет назад (т. е. в докембрии) на нашей планете. От этих эпох остались мощные комплексы строматолитов — известняков водорослевого происхождения, по форме и внутренней структуре аналогичных современным водорослевым постройкам.
Многие из древнейших разновидностей известняков были погружены впоследствии на большие глубины в недра Земли. Здесь под воздействием высоких температур и давлений они превратились в мрамор — породу, в которой изначальные элементы полностью перекристаллизованы, а поровое пространство заполнено карбонатами поздней генерации. В мраморах можно видеть следы оползания или течения карбонатного вещества либо в период отложения на дне водоема, либо под влиянием огромных нагрузок в глубоких недрах. Эти текстуры придают отдельным кускам мрамора неповторимый, притягательный для глаз облик. Многообразные примеси, окрасившие первоначально белый или палевый известняк в различные тона кремового, коричневого, красного и других цветов, делают мрамор ценнейшим отделочным материалом. Недаром самые известные из памятников архитектуры, начиная с древнегреческого акрополя, строились из мрамора или по крайней мере отделывались мраморными плитами и колоннами. Одна из древнейших каменоломен, где добывали этот материал, была обнаружена на острове Мармора в Геллеспонте (Мраморное море). Отсюда и пошло название этого вида перекристаллизованных известняков.
Возникшие в конце докембрия (0,7–0,6 млн лет назад) многочисленные формы морской фауны и флоры вытеснили своих примитивных предшественников в периферийные экологические ниши — лагуны и заливы. Многие из новых организмов унаследовали от них способность связывать углекислый газ и кальций в минеральную соль. Это были багряные водоросли, литотамнии, кишечнополостные (губки) и конодонты. Другие животные — трилобиты стали строить панцирь из хитина. Известняки накапливались по всему миру, и особенно быстрыми темпами в раннем палеозое. Однако подлинная революция произошла после того, как появились колониальные формы мельчайших животных — предшественников современных кораллов. Они принялись строить настоящие города под водой, да еще в тех условиях, где не выдерживала самая крепкая порода. Действительно, только рифы, заселенные живыми кораллами, способны устоять под непрерывными ударами океанских волн, разрастаясь при этом в высоту и ширину. На безбрежных пространствах древних эпиконтинентальных морей и океанических шельфов распространились и одиночные морские организмы, защищенные карбонатными раковинами: брахиоподы, моллюски, морские лилии и ежы, мшанки. Наконец появились и свободно плавающие в воде организмы, использовавшие для построения скелета карбонат кальция: аммониты, фораминиферы, нанопланктон. Кальцит и арагонит стали формироваться по всему океану, исключая высокие широты и глубоководные зоны, где преобладали холодные воды. Остатки свободноплавающих организмов опускались на дно. Здесь органические составляющие полностью или частично разлагались, но оставались компоненты скелета, накапливавшиеся в виде осадка. В эпохи высокого стояния океанических вод, когда значительные площади суши оказывались под водой и поступление обломочного материала резко сокращалось, карбонатные отложения становились самыми распространенными в морях и океанах. Они формировались и в крупных озерных водоемах на суше.
Одной из эпох преимущественного карбонатонакопления была позднемеловая. Уровень океанических вод в то время поднялся на 150–200 м выше современного. Вследствие этого береговая линия резко отступила в глубь суши. Периферийные и часть центральных районов крупнейших платформ — Восточно-Европейской, Северо-Американской и Африканской — заняло море. Водосборные площади рек сократились; в результате в океан с суши перестали поступать огромные количества песка и тонкой взвеси. В толще воды распространились мельчайшие карбонатстроящие организмы — кокколитофориды. Из их остатков, опустившихся на дно, образовались тончайшие белые илы, которые затем, уплотнившись, превратились в мел. В поле электронного сканирующего микроскопа образцы мела предстают совершенно иными. Здесь можно увидеть различные структуры в виде щитов, шлемов, колес, спиралек и т. д. Мел — это гигантское кладбище нанопланктона, формировавшееся миллионы лет. Название этой породы было присвоено и тому периоду, в котором она получила широкое распространение.
Не только мел, но и мергели, а также многие разновидности тонкозернистых известняков сложены мельчайшим детритом карбонатстроящих организмов. По характерным их остаткам легко установить время образования карбонатных отложений и возраст всей толщи пород. Именно в известняках палеонтологи нашли и определили большую часть ископаемых моллюсков, кораллов, мшанок и др., обнаружили древние карбонатные банки и отмели, огромные рифовые массивы. В частности, выяснилось, что рифовые острова и атоллы протягивались в раннепермское время и в позднем карбоне вдоль восточного края Русской плиты, от Тимана до Башкирии и далее на юг, в Прикаспийскую впадину, т. е. как современный Большой Барьерный риф Австралии. Последний возник у края шельфа в Коралловом море и состоит из тысяч островков и рифов кораллового происхождения, вытянутых с севера на юг на расстояние более 2000 км. Еще больший по протяженности барьерный риф позднеюрско-раннемелового возраста распадается на отдельные кольцевые комплексы шириной 150–200 км. Он выявлен с помощью геофизических методов и бурения под шельфом и континентальным склоном атлантической окраины Северной Америки, от Ньюфаундленда до Багамской банки и далее по северному контуру Мексиканского залива до полуострова Юкатан. Здесь при бурении на глубине нескольких тысяч метров в районе банки Кампече были открыты гигантские месторождения нефти. Залежи находятся в высокопористых рифовых известняках. Высота некоторых из них превышает 1000 м.
Крупные месторождения нефти, приуроченные к древним погребенным рифовым массивам, были обнаружены во многих районах мира. Однако пальма первенства в этом отношении принадлежит Персидскому заливу, где в рифах, да и вообще в известняках, сосредоточены огромные запасы углеводородного сырья (около 21 млрд т нефти и 11,5 трлн м3 газа).
Значение карбонатных пород, известняков и доломитов как коллекторов нефти и газа очень велико. Во многих крупных нефтегазоносных бассейнах в них заключено более половины запасов углеводородов. Объясняется это хорошими емкостными возможностями благодаря большому количеству пор или каверн, унаследованных от первичной структуры рифа или возникших при выщелачивании карбоната кальция во время погружения в осадочные бассейны.
Карбонат кальция обладает повышенной растворимостью в холодных водах. Поэтому организмы, строящие из него скелет или раковины, слабо распространены в Высоких широтах и не живут в глубоководных зонах океана, где температура воды не превышает 4–8 °C. Более того, карбонатные раковины и различные минеральные компоненты карбонатного планктона, обитающего в поверхностном водном слое морей и океанов, опускаясь после отмирания на дно, постепенно растворяются. Существует так называемая критическая глубина карбонатонакопления, т. е. тот уровень, ниже которого не способны проникнуть остатки карбонатного планктона, так как по пути на дно они должны полностью раствориться. В современную эпоху она соответствует в океане 4500 м. В другие геологические эпохи этот условный уровень поднимался или опускался. Скелетные остатки из арагонита растворяются быстрее, чем кальцитовые раковинки. Поэтому критическая глубина растворения арагонита на 800-1000 м выше приведенного выше значения.