Удивительная физика
Удивительная физика читать книгу онлайн
В увлекательной форме изложены оставшиеся за рамками школьных учебников сведения по основным разделам физики, описаны драматические истории великих научных открытий, приведены нестандартные подходы к пониманию физических явлений, нетрадиционные взгляды на научное наследие известных ученых.
Для учителей, старшеклассников, студентов, а также для всех, кто желает открыть для себя незнакомую, полную тайн и парадоксов физику.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Воспитанием маленького Вильяма никто не занимался. Отец его, довольно легкомысленный человек, только и делал, что удил рыбу и забавлялся петушиными боями. Начав было учиться сапожному ремеслу, Вильям вскоре сбежал от своего сурового учителя, который морил его голодом. Юноша работал в полиции, а затем служил в армии. Но во время службы он ухитрялся ставить несложные опыты по физике и химии.
Там же, в армии, произошло событие, оказавшее большое влияние на молодого солдата. Стерджен стал свидетелем необычайной по силе грозы. Огромные ослепительные молнии и грохочущий гром поразили его, и он решил заняться изучением электричества.
Но чтобы читать книги, нужно быть грамотным, и Стерджен начал упорно учиться чтению, письму и грамматике, постепенно осваивал математику, физику, языки, а кроме того, он чертил и с удовольствием ремонтировал часы. И все это в армии с ее дисциплиной, преимущественно по ночам!
Закончив службу в армии, молодой Стерджен купил токарный станок и стал изготовлять физические и электрические приборы. Это произошло в 1820 г., когда были сделаны великие открытия Эрстеда, Араго и Ампера. И 23 мая 1825 г. Стерджен представил Обществу искусств построенный им первый электромагнит.
Это был подковообразный стержень, покрытый для электроизоляции лаком, длиной 30 и диаметром 1,3 см. На этот стержень был намотан всего один слой голой медной проволоки, которая замыкалась на электрическую батарею (рис. 364). При массе 0,2 кг электромагнит Стерджена поднимал железный груз, почти в 20 раз тяжелее. Первый же электромагнит сразу оказался сильнее природных магнитов той же массы.
Правление Общества искусств сумело оценить работу Стерджена. Он был награжден медалью и денежной премией, а прибор выставили в музее. Однако, несмотря на последующие выдающиеся достижения Стерджена, слава и успех так и не пришли к нему. Он умер в бедности и лишениях в 1850 г., причем не сохранилось даже портрета изобретателя первого электромагнита.
Долгое время, вплоть до 1840 г., электромагниты Стерджена были самыми сильными в мире. А потом вперед вышел ученик Стерджена, будущий великий физик Д. Джоуль. Повысив число полюсов электромагнита и рационально расположив их на грузе, он создает конструкцию, способную при собственной массе 5,5 кг поднимать 1,2 т! Важно при этом, чтобы полюса были парными и число их – четным.
Следует сказать, что не любое повышение числа полюсов выгодно. Так, например, «трехлапый» магнит (рис. 365, а) хуже обычного двухполюсного (рис. 365, б), потому что магнетизм каждого из стержней мешает другим. Невыгодно также один крупный магнит составлять из отдельно намотанных мелких.
Электромагниты стали широко применять в промышленности для подъема тяжелых стальных грузов (рис. 366). В 1864 г. в Нью-Йорке построили электромагнит массой 260 кг, «который поднял семерых человек однажды, и сколько он еще может поднять, никто не знает».
Заметим, что электромагнит был не столь уж безопасным подъемным устройством. Стоило только току прекратиться, как электромагнит мгновенно терял силу, и страшный груз сваливался «с неба» на что и кого попало. А причин прекращения тока могло быть предостаточно – порвался провод, выбило предохранитель, случилась авария на станции и т. д. Поэтому в дальнейшем стали поступать иначе.
Витки проволоки стали навивать не на простое железо, а на намагниченный материал – постоянный магнит, причем так, чтобы при пропускании тока размагнитить его. Для подъема груза ток выключали, и постоянный магнит (а сейчас есть очень сильные постоянные магниты) притягивал стальные, железные и чугунные предметы, которые поднимали и переносили на место. А чтобы отпустить груз, подавали ток в витки, и магнит временно размагничивался – полюса постоянного магнита и обмотки соленоида были противоположными! Груз отцеплялся. Когда магниту не надо было работать, ток, конечно, выключали, отодвинув магнит от железных предметов подальше, например, подняв его в воздух.
Подъемные краны с таким магнитом стали значительно безопаснее, им уже не страшны перерывы в подаче тока.
В первой половине XX в. были построены электромагниты, поднимавшие грузы до 75 т. Казалось, что сила электромагнитов может расти бесконечно… Однако получилось так, что выгода от введения Стердженом железного стержня внутрь обмотки стала постепенно исчезать. Пока катушки были малы (вспомним однослойную навивку первого электромагнита), железо сильно увеличивало подъемную силу магнита. Но потом создатели электромагнитов заметили, что с повышением силы магнита его железо как бы насыщается и больше не помогает электромагниту. Начали строить магниты с короткими заостряющимися полюсами, массивным ярмом и огромными катушками, так как эти мероприятия, как оказалось, еще более увеличивали подъемную силу.
Можно, конечно, сделать количество железа в электромагните настолько большим, чтобы не доводить его до «перенасыщения». Американский изобретатель Эдисон, например, предложил построить самый крупный электромагнит в мире, обмотав проволокой скалу из магнитного железняка в американском городе Огдене, массой более чем 100 млн т!
К сожалению, этот смелый и остроумный проект не был осуществлен, иначе легенда о магнитной горе, вытаскивающей гвозди из кораблей, стала бы явью!
Электромагнитные фокусы и мошенничества
Поговорим о «несерьезных» применениях электромагнитов.
Прежде всего, это цирковые фокусы. Еще в конце XIX в. некий дрессировщик показывал «ученого» слона, который якобы мог проделывать в уме сложные математические расчеты и давал правильные ответы. Дрессировщик громко задавал слону вопросы, связанные с любым математическим действием. После этого тот брал хоботом указку и действительно показывал ею на какую-либо цифру на доске перед собой. Цифра эта всегда оказывалась правильной, что должно было свидетельствовать о высокой математической подготовке слона и о том, что он понимает вопрос, произнесенный на человечьем языке.
Разгадка этого трюка проста. Под каждой цифрой на доске был прикреплен электромагнит. Математические действия, задаваемые слону, проделывал сам дрессировщик или его ассистент, который и замыкал обмотку электромагнита, лежащего под соответствующей цифрой. Слону только оставалось брать в хобот железную указку и водить ею возле доски с цифрами. Когда указка приближалась к включенному электромагниту, она сама, без малейшего участия слона, притягивалась к правильной цифре. Сейчас бы любой школьник догадался об обмане, а сто с лишним лет назад не так уж широко были известны электромагниты и их свойства, что и вызвало сенсационный успех слона-математика.
Тем более совершенно неведомы электромагнитные явления были в это время народам Африки. Это позволяло европейцам легко мистифицировать их несложными фокусами. Один из таких фокусов, «доказывающий» преимущество белых людей над местным населением, показывал французский фокусник Роберт Гудэн. Об этом небезобидном фокусе, который достаточно помог французам в завоевании Алжира, красочно рассказывает сам Роберт Гудэн.
«На сцене находится небольшой окованный железный ящик с ручкой на крышке.
Я вызываю из зрителей человека посильнее. В ответ на мой вызов выходит араб среднего роста, но крепкого сложения, представляющий собой аравийского геркулеса. Выходит он с бодрым и самонадеянным видом и, немного насмешливо улыбаясь, останавливается около меня.
– Подойдите сюда, – сказал я, – и поднимите ящик.