Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота читать книгу онлайн
Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.
Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.
Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Значит, эти явления и будут определять естественный ход событий. Закон о невозможности вечного двигателя второго рода, закон о стремлении всех тел к равновесному состоянию, получает свое объяснение. Почему механическое движение переходит в тепловое? Да потому, что механическое движение упорядочено, а тепловое беспорядочно. Переход от порядка к беспорядку повышает вероятность состояния.
Физики часто используют вспомогательную величину, называемую энтропией. Энтропия характеризует степень порядка и связана простой формулой с числом способов создания состояния. Формулы приводить не будем, скажем лишь, что чем больше вероятность, тем больше и энтропия.
Закон природы, который мы сейчас обсуждаем, говорит: все естественные процессы происходят так, что вероятность состояния возрастает. Другими словами, тот же закон природы формулируется как закон возрастания энтропии.
Закон возрастания энтропии – важнейший закон природы. Из него вытекает, в частности, и невозможность построения вечного двигателя второго рода, или, что то же самое, утверждение, что предоставленные сами себе тела стремятся к равновесию.
Закон возрастания энтропии иногда называют вторым началом термодинамики (термодинамика – учение о тепле). А первое начало? Это закон сохранения энергии. Название «начала термодинамики» для этих законов природы сложилось исторически. Нельзя сказать, чтобы такое объединение «под одну шапку» было удачно. Ведь закон сохранения энергии – это механический закон, которому подчиняются неукоснительно как большие тела, так и отдельные атомы и молекулы. Что же касается закона возрастания энтропии, то, как следует из сказанного выше, он применим лишь к достаточно большому собранию частиц, а для отдельных молекул его просто невозможно сформулировать.
Статистический (это и обозначает относящийся к большому собранию частиц) характер второго начала термодинамики нисколько не принижает его значения. Закон возрастания энтропии предопределяет направление процессов. В этом смысле энтропию можно назвать директором-распорядителем природных богатств, а энергия служит у нее бухгалтером.
Кому же принадлежит честь открытия этого важного закона природы? Здесь нельзя ограничиться одним именем. У второго начала термодинамики есть своя история. И здесь, так же как в истории первого начала термодинамики, в первую очередь должно быть упомянуто имя француза Сади Карно. В 1824 г. он издал на свои средства печатный труд под названием «Размышления о движущей силе огня». В этой работе впервые было указание, что тепло не может переходить от холодного тела к теплому без затраты работы. Карно показал также, что максимальный коэффициент полезного действия тепловой машины (см. ниже) определяется лишь разностью температур нагревателя и охлаждающей среды.
Только после смерти Карно в 1832 г. на эту работу обратили внимание другие физики. Однако она мало повлияла на дальнейшее развитие науки из-за того, что все сочинение Карно было построено на признании неразрушимого и несоздаваемого «вещества» – теплорода.
Только после работ Майера, Джоуля и Гельмгольца, установивших закон эквивалентности тепла и работы, великий немецкий физик Рудольф Клаузиус (1822–1888) пришел ко второму началу термодинамики и математически сформулировал его. Клаузиус ввел в рассмотрение энтропию и показал, что сущность второго начала термодинамики сводится к неизбежному росту энтропии во всех реальных процессах.
РУДОЛЬФ КЛАУЗИУС (1822–1888) – выдающийся немецкий физик-теоретик. Клаузиус впервые четко сформулировал второй закон термодинамики: в 1850 г. – в виде положения о невозможности самопроизвольной передачи теплоты от более холодного тела к более теплому, а в 1865 г. – с помощью введенного им же понятия энтропии. Одним из первых Клаузиус обратился к вопросам о теплоемкости многоатомных газов и теплопроводности газов. Работы Клаузиуса по кинетической теории газов способствовали развитию статистических представлений о физических процессах. Клаузиусу принадлежит ряд интересных работ по электрическим и магнитным явлениям.
Второе начало термодинамики позволяет сформулировать ряд общих законов, которым должны подчиняться все тела, как бы они ни были построены. Однако остается еще вопрос, как найти связь между строением тела и его свойствами? На этот вопрос отвечает область физики, которая называется статистической физикой.
Ясно, что при подсчете физических величин, описывающих систему, состоящую из миллиардов миллиардов частиц, совершенно необходим новый подход. Ведь было бы бессмысленно, не говоря уже о том, что и абсолютно невозможно, следить за движениями всех частиц и описывать это движение с помощью формул механики. Однако именно это огромное количество частиц позволяет применить к изучению тел новые «статистические» методы. Эти методы широко используют понятие вероятности событий. Основы статистической физики были заложены замечательным австрийским физиком Людвигом Больцманом (1844–1906). В серии работ Больцман показал, каким образом указанная программа может быть осуществлена для газов.
В 1877 г. логическим завершением этих исследований явилось данное Больцманом статистическое истолкование второго начала термодинамики. Формула, связывающая энтропию и вероятность состояния системы, высечена на памятнике Больцману.
Трудно переоценить научный подвиг Больцмана, нашедшего в теоретической физике совершенно новые пути. Исследования Больцмана подвергались при его жизни насмешкам со стороны консервативной немецкой профессуры: в то время атомные и молекулярные представления считались многими наивными и ненаучными. Больцман покончил жизнь самоубийством, и обстановка, несомненно, сыграла в этом далеко не последнюю роль.
Здание статистической физики было в значительной степени завершено трудами выдающегося американского физика Джозайи Уилларда Гиббса (1839–1903). Гиббс обобщил методы Больцмана и показал, каким образом можно распространить статистический подход на все тела.
Последняя работа Гиббса вышла в свет уже в начале XX века. Очень скромный исследователь, Гиббс печатал свои труды в известиях небольшого провинциального университета. Прошло порядочное число лет, пока его замечательные исследования сделались известными всем физикам.
Статистическая физика показывает путь, следуя по которому можно вычислить свойства тел, состоящих из данного количества частиц. Конечно, не следует думать, что эти методы расчета всемогущи. Если характер движения атомов в теле очень сложен, как это имеет место в жидкостях, то реальное вычисление становится практически неосуществимым.
Мощность
Чтобы судить о возможности машины производить работу, а также о потреблении работы, пользуются понятием мощности. Мощность – это работа, совершенная в единицу времени.
Существует много различных единиц измерения мощности. Системе CGS соответствует единица мощности эрг/с. Но 1 эрг/с – ничтожно малая мощность, и эта единица поэтому для практики неудобна. Несравненно более распространена единица мощности, которую получают делением джоуля на секунду. Эта единица называется ватт (Вт). 1 Вт = 1 Дж/с = 10 7эрг/с.
Когда и эта единица мала, ее умножают на тысячу и пользуются киловаттом.
От старых времен перешла к нам в наследство единица мощности, называемая лошадиной силой. Когда-то на заре развития техники это название имело глубокий смысл. Машина мощностью в 10 лошадиных сил заменяет 10 лошадей – так заключал покупатель, даже если он не имел представления о единицах мощности.
Разумеется, лошадь лошади рознь. Автор первой единицы мощности, по-видимому, полагал, что «средняя» лошадь способна произвести за одну секунду 75 кГм работы. Такая единица и принята: 1 л.с. = 75 кГм/с.
Тяжеловозы способны производить бо́льшую работу, в особенности в момент трогания с места. Однако мощность средней лошади скорее близка к 1/2 лошадиной силы.