Введение в электронику
Введение в электронику читать книгу онлайн
Книга известного американского специалиста в простой и доступной форме знакомит с основами современной электроники. Основная ее цель — теоретически подготовить будущих специалистов — электриков и электронщиков — к практической работе, поэтому кроме детального изложения принципов работы измерительных и полупроводниковых приборов, интегральных микросхем рассмотрены общие вопросы физики диэлектриков и полупроводников. Обсуждение общих принципов микроэлектроники, описание алгоритмов цифровой обработки информации сопровождается примерами практической реализации устройств цифровой обработки сигналов, описаны принципы действия и устройство компьютера. Книга снабжена большим количеством примеров, задач и упражнений, выполнение которых помогает пониманию и усвоению материала. Предназначена для учащихся старших курсов средних специальных учебных заведений радиотехнического профиля, а также будет полезна самостоятельно изучающим основы электроники.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Рис. 27–33. Утроитель напряжения.
На рис. 27–34 показано, как положительный полупериод открывает диод D1, и он начинает проводить. В результате конденсатор C1 заряжается до максимального значения входного сигнала и создает положительный потенциал на диоде D2.
Рис. 27–34. Утроитель напряжения в течение первого положительного полупериода входного сигнала.
На рис. 27–35 изображено действие отрицательного полупериода входного сигнала. Так как диод D2 теперь смещен в прямом направлении, через него течет ток к конденсатору C1 через конденсатор С2. Поскольку на конденсаторе C1 сохранилось напряжение, конденсатор С2 заряжается до удвоенного максимального значения.
Рис. 27–35. Утроитель напряжения в течение отрицательного полупериода входного сигнала.
На рис. 27–36 показан следующий положительный полупериод.
Рис. 27–36. Утроитель напряжения в течение второго положительного полупериода входного сигнала.
В течение этого полупериода на конденсаторе С2 создается разность потенциалов, которая в три раза больше максимального входного значения. Верхняя обкладка конденсатора С2 заряжена положительно до удвоенного максимального значения напряжения. Анод диода D2 имеет положительный потенциал, равный утроенному значению максимального значения напряжения по отношению к земле, следовательно, конденсатор С3 заряжен до утроенного значения максимального значения напряжения. Это напряжение и прикладывается к нагрузке.
27-5. Вопросы
1. Для чего предназначен умножитель напряжения?
2. Нарисуйте схему однополупериодного удвоителя напряжения и объясните, как он работает.
3. Нарисуйте схему двухполупериодного удвоителя напряжения.
4. Нарисуйте схему утроителя напряжения.
5. Какие требования должны предъявляться к конденсаторам, используемым в цепях удвоения и утроения напряжения?
Для защиты нагрузки от неисправности в блоке питания используется цепь защиты от превышения напряжения. На рис. 27–37 изображена схема защиты от превышения напряжения. КУВ, подключенный параллельно нагрузке, в нормальном состоянии закрыт (не проводит).
Рис. 27–37. Цепь защиты от превышения напряжения на основе КУВ.
Если выходное напряжение превышает установленный уровень, КУВ открывается и закорачивает нагрузку. Когда нагрузка закорочена, через нее течет очень маленький ток. Это полностью защищает нагрузку. Однако закорачивание нагрузки не защищает блок питания, так как при этом закорачивается выход блока питания. Это пережигает предохранитель в блоке питания.
Стабилитрон устанавливает уровень напряжения, при котором КУВ открывается. Он защищает нагрузку от напряжений, превышающих напряжение стабилизации. До тех пор, пока приложенное напряжение меньше, чем напряжение стабилизации стабилитрона, он не проводит ток. Это удерживает КУВ в запертом состоянии.
Если приложенное напряжение превышает напряжение стабилизации вследствие неправильной работы блока питания, стабилитрон начинает проводить. Это создает ток управляющего электрода КУВ, он открывается и закорачивает нагрузку. Необходимо заметить, что КУВ должен быть достаточно мощным для работы при большом токе короткого замыкания.
Другим устройством защиты является плавкий предохранитель (рис. 27–38).
Рис. 27–38. Плавкие предохранители, используемые для защиты электронных цепей.
Плавкий предохранитель — устройство, которое выходит из строя при перегрузке. Плавкий предохранитель — это просто кусочек проволоки, соединяющий два металлических вывода. Полый стеклянный цилиндр отделяет выводы друг от друга и защищает проволоку. Обычно плавкий предохранитель включают последовательно с первичной обмоткой трансформатора блока питания. Если через блок питания течет большой ток, то проволока предохранителя перегревается и плавится. Цепь размыкается, и ток прерывается. Стеклянный цилиндр предохранителя позволяет визуально проверить пригодность предохранителя.
Предохранители делятся на обычные и с замедлением.
Обычные предохранители перегорают сразу же при превышении тока. В некоторых цепях это является преимуществом, так как быстро устраняется перегрузка. Предохранитель с замедлением может выдерживать короткий период перегрузки перед тем, как расплавиться. Это происходит потому, что в таком предохранителе проволока нагревается медленнее. Если перегрузка имеет место в течение более чем нескольких секунд, она расплавляет предохранитель. Предохранитель с замедлением может содержать спираль в состоянии оттягивания момента расплавления.
Некоторые цепи могут противостоять току перегрузки. В таких цепях использование предохранителя с замедлением предпочтительнее обычного.
Предохранитель всегда устанавливается после выключателя на «горячем» выводе (фазе) источника переменного тока. В результате трансформатор отсоединяется от источника переменного тока при перегорании предохранителя. При установке предохранителя после выключателя сеть может быть отключена от держателя предохранителя для обеспечения безопасности при замене предохранителя.
Плавкий предохранитель не следует заменять до тех пор, пока неисправность не будет обнаружена и исправлена.
Недостатком плавкого предохранителя является то, что после каждого перегорания его необходимо заменять. Размыкатель цепи выполняет такую же работу, но не требует замены после каждой перегрузки. Вместо этого размыкатель цепи может быть вручную установлен в исходное положение после перегрузки (рис. 27–39). Размыкатели цепи включаются в цепь так же, как и предохранители.
Рис. 27–39. Размыкатели цепи, используемые для защиты электронных цепей.
27-6. Вопросы
1. Как работает схема защиты от превышения напряжения на основе КУВ?
2. Как работает плавкий предохранитель, когда он используется в цепи?
3. Какие бывают типы предохранителей?
4. В каком месте цепи устанавливается предохранитель?
5. В чем преимущество размыкателя цепи перед предохранителем?
РЕЗЮМЕ
• Основным назначением блока питания является преобразование переменного тока в постоянный.
• Трансформаторы используются в блоках питания для изоляции и для повышения или понижения напряжения.
• Выпрямитель преобразует входное переменное напряжение в пульсирующее постоянное напряжение.
• Основными выпрямительными цепями являются: однополупериодная, двухполупериодная и мостовая.