Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота читать книгу онлайн
Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.
Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.
Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Существенную роль играет соотношение между длиной волны и размерами отверстия. Если длина волны велика по сравнению с этими размерами, то, выходя из отверстия, волны «растекаются» во все стороны, как будто само отверстие является источником звука. Наоборот, если длина волны гораздо меньше размеров отверстия, звук распространяется по лучам, и там, где прямая линия, проведенная от источника звука к наблюдателю, попадает в препятствие (в нашем примере – в стену), возникает «тень»: звука почти не слышно.
В нашем примере средней частоте человеческого голоса в 1000 Гц соответствует длина волны 30 см. Поэтому такие волны в метровом оконном проеме распространяются охотнее всего вперед, но заметно отклоняются и в стороны.
Изобразить огибание препятствий звуковыми волнами на рисунке очень трудно.
Гораздо проще показать, как в похожей ситуации ведут себя поверхностные волны на воде. Об этих волнах мы поговорим чуть позже. Свойства таких волн несколько своеобразны. Однако, что касается правил огибания волнами препятствий, то они одинаковы и для водяных, и для звуковых воздушных волн.
Рис. 122 и 123 изображают прохождение водяных волн разной длины через какое-либо отверстие. На рис. 122 длина волны существенно больше размера отверстия. В этом случае волна почти полностью заполняет область за экраном. На рис. 123 изображена волна очень малой длины. Теперь распространение волны происходит по лучам. В область геометрической тени волна почти не заходит.
Таким образом, оказывается, что когда длина звуковых волн значительно меньше размеров тех предметов, с которыми они сталкиваются, звук ведет себя совершенно так, как будто это не колебания воздуха, а движущийся в воздухе поток частиц. Отличие от обычных частиц заключается главным образом в том, что обычные частицы могут двигаться с произвольными скоростями, а звук всегда распространяется с одной и той же скоростью.
Волновая природа звука сказывается в том, что он все-таки всегда в какой-то степени отклоняется от прямолинейного распространения. Как мы уже говорили, это отклонение тем меньше, чем меньше длина волны, но оно всегда существует и в принципе может быть измерено. Это отклонение называется дифракцией звука. Существование дифракции могло бы служить доказательством того, что звук есть волновое движение, если бы мы не знали этого непосредственно (по способу получения звука). Изучая дифракцию, можно было бы измерить длину звуковых волн, если бы мы опять-таки не знали ее по частоте колебаний источника звука.
Отражение звука
В этом параграфе мы будем предполагать, что длина звуковой волны достаточно мала и, следовательно, звук распространяется по лучам. Что происходит, когда такой звуковой луч падает из воздуха на твердую поверхность? Ясно, что при этом происходит отражение звука. Но куда он отражается?
Аналогия распространения звука с движением материальных частиц показывает, что такое отражение должно происходить так же, как отражение мячика от стенки, с той только разницей, что в результате процессов трения при ударе скорость мячика уменьшится, в то время как скорость распространения звука, связанная лишь со свойствами воздушной среды, конечно, не изменится. Трение здесь скажется не в изменении скорости звука, а в том, что при отражении часть энергии звуковых волн перейдет в тепло.
Поскольку отражение звука не отличается в принципе от упругого удара, закон отражения звука можно сформулировать следующим образом: угол падения звукового луча, т.е. угол, составленный лучом и нормалью (т.е. перпендикуляром) к участку поверхности, на который он попадает, равен углу отражения, причем отраженный луч находится в плоскости, проходящей через падающий луч и нормаль к поверхности. Эта плоскость называется плоскостью падения луча.
Итак, если мы хотим узнать, куда пойдет отраженный луч, надо поступить следующим образом. В месте падения луча проведите нормаль, измерьте угол падения, постройте плоскость падения. Затем в этой плоскости отложите по другую сторону от нормали угол, равный углу падения; полученная прямая и представит собой отраженный луч (рис. 124).
Решим теперь интересную задачу. Как мы знаем, звук распространяется во все стороны от источника, и в отдаленную точку приходит лишь малая доля звуковой энергии.
Какой должна быть отражающая поверхность, для того чтобы собрать звук источника снова в одной точке? Форма отражающей поверхности должна быть такой, чтобы лучи, падающие на нее из одной точки (источника звука) под разными углами, отражались бы снова в одну точку. Что же это за поверхность? Мы уже знаем, что такое эллипс. На стр. 164шла речь об этой замечательной кривой, обладающей той особенностью, что расстояние от одного фокуса эллипса до какой-нибудь точки кривой плюс расстояние от другого фокуса до этой же точки одно и то же для всех точек эллипса. Представьте себе, что эллипс вращается вокруг главного диаметра. Вращающаяся кривая опишет поверхность, которая называется эллипсоидальной, или просто эллипсоидом. Форма эллипсоида напоминает яйцо.
Эллипс обладает следующей геометрической особенностью (рис. 125). Если провести угол, который опирается на одну из его точек и стороны которого проходят через фокусы эллипса, то биссектриса этого угла будет нормалью к эллипсу (т.е. перпендикуляром к касательной к эллипсу в этой точке). Значит, если звуковой луч выйдет из одного фокуса эллипсоида, то, отразившись от его поверхности, он придет в другой. Так будут вести себя все лучи, и весь звуковой поток, который вышел из одного фокуса, соберется в другом.
Это свойство кривых поверхностей такого типа знали еще в древности. В средние века, во времена инквизиции, когда контроль над мыслями каждого человека стал одной из важнейших сторон государственной деятельности, для подслушивания разговоров использовали сводчатые поверхности. Двое людей, тихим голосом поведывающие друг другу свои мысли, и не подозревали, что благодаря сводчатому потолку в другом углу кабачка дремлющий монах почти так же хорошо слышит каждое слово их беседы, как и они сами.
Эллипсоидальную поверхность построить трудно. Но небольшие участки сферической поверхности мало отличаются по форме от участков эллипсоида.
Если перед таким сферическим «зеркалом» поставить звучащий предмет, то звуковые лучи, исходящие из него, в другом поле отражения снова соберутся, – правда, не в одной точке, как в настоящем эллипсоиде, а в небольшой области пространства.
Можно проделать такой опыт даже с обыкновенной глубокой тарелкой. Если близко к такой тарелке поместить часы, тиканье которых практически неслышно ухом уже на расстоянии порядка метра, то можно довольно далеко от тарелки найти точку, в которой тиканье часов слышно с такой же громкостью, как если бы вы поднесли их к уху. Это же явление используется при сооружении суфлерской будки в театре. Расположение суфлера и форма будки лучше всего подходят для отражения звука в сторону сцены.
Отражение звука от стен помещения очень интересует строителей театров, концертных зданий, залов для собраний. Эта область строительной техники, занимающаяся проблемой наилучшей слышимости в закрытых помещениях, называется архитектурной акустикой.
Волны, идущие по поверхности
Подводники не знают морских бурь. В самые сильные штормы на глубине в несколько метров под уровнем моря царит штиль. Морские волны – один из примеров волнового движения, захватывающего лишь поверхность тела.