Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания читать книгу онлайн
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.
Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.
Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг. В круг его интересов попадает всё — время и пространство, множественные измерения, темные материя и энергия, космология. Его последняя книга повествует о том, как Альберт Эйнштейн и Эрвин Шрёдингер сражались с несовершенством и недетерминированностью квантовой механики, пытаясь создать теорию поля, которая объединила бы все силы природы и потеснила квантовую странность. К сожалению, оба потерпели фиаско.
Сможет ли кто-то из современных ученых превзойти гениев прошлого? Найдется ли новый Эйнштейн, который сможет воплотить его мечту о единой физической теории в жизнь?
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Ажиотаж в физическом сообществе достиг накала в 1975 году, когда Джон Шварц и французский физик Жоэль Шерк предложили способ объяснения гравитации при помощи суперсимметрии. Они показали, как гравитоны — гипотетические бозоны — переносчики гравитационного взаимодействия — естественным образом возникают в их теории, если применить методы суперсимметрии к другим типам частиц. Гравитация, утверждали исследователи, оказывалась, таким образом, естественным следствием союза между бозонами и фермионами. Пожените эти два типа элементарных частиц, и от их брака родятся гравитоны.
Многие ученые, например французские теоретики Эжен Креммер, Бернар Джулиа и Жоэль Шерк из Высшей нормальной школы в Париже, голландский физик Бернар де Вит совместно с немецким физиком Херманном Николаи, научная группа голландского физика Питера ван Ньювенхейзена из Университета штата Нью-Йорк в Стоуни-Брук применили суперсимметрию к стандартной квантовой теории поля (не используя струны). Такой подход был назван супергравитацией. Креммер, Джулиа и Шерк показали, как такая теория может быть идеально размещена в одиннадцатимерном пространстве-времени [20], где лишние семь измерений сворачивались. Несмотря на многообещающее начало, супергравитация столкнулась с проблемами при описании определенных аспектов мира частиц.
Объединившись с британским физиком Майклом Грином, Шварц продолжил исследования свойств суперструн. В 1984 году Грин и Шварц объявили, что им удалось создать десятимерную модель, которая свободна от аномалий (технических математических дефектов). Кроме того, в отличие от КЭД, электрослабой теории и других стандартных квантово-полевых теорий, суперструнные теории поля приводят к конечным значениям различных физических величин и поэтому не требуют сокращения бесконечных выражений путем перенормировки. Полученные ими результаты, которые сразу окрестили «суперструнной революцией», давали множество поводов для радости. Возможно, с помощью суперструн, думали многие физики, удастся закончить поиски единой теории поля, начатые Эйнштейном.
Подобно тому как Эйнштейн, Шрёдингер и прочие ученые показали, что существует множество способов расширить общую теорию относительности, Грин, Шварц и другие исследователи, такие как блестящий теоретик Эдвард Виттен из Института перспективных исследований в Принстоне, который доказал ключевые теоремы новой теории, разработали множество типов теории суперструн. На самом деле выбор был настолько большой, что просто глаза разбегались. Теория суперструн вскоре стала лабиринтом с бесчисленным множеством возможных маршрутов. Но какой из них будет той самой нитью Ариадны, которая приведет к единой всеобъемлющей теории природы?
На конференции в 1995 году в Калифорнии Виттен провозгласил начало Второй суперструнной революции. На этот раз теория, помимо струн, включала новые объекты различной размерности — мембраны [21]. Он назвал новый подход М-теорией, туманно выразившись в том смысле, что буква «М» может означать как «мембрану», так и «магию». М-теория объединила несколько разных типов теории струн, а также несколько теорий супергравитации в едином подходе. Одним из новшеств, наученных в конце 1990-х годов такими физиками, как Ним Аркани-Хамед, Савас Димопулос, Георгий Двали, Лиза Рэндалл, Раман Сундрум и другими, была идея о том, что одно из дополнительных измерений может быть «большим» (то есть немикроскопическим), но недоступным для всех типов полей, кроме гравитонов. Это объясняет, почему гравитация гораздо слабее, чем другие силы природы.
В отличие от Стандартной модели и общей теории относительности, суперсимметрия, теория суперструн, М-теория и существование дополнительных измерений до сих пор никак не подтверждены. Почему же тогда у них так много сторонников среди теоретиков? Такие факторы, как математическая красота, симметрия, полнота поразительно похожие на некоторые критерии Эйнштейна, — все они определяют этот выбор. Плюс ко всему на сегодняшний день не предложено других альтернативных теорий, заслуживающих доверия.
Петлевая квантовая гравитация, разработанная Абэйем Аштекаром, Карло Ровелли, Ли Смолиным и другими физиками, является, пожалуй, наиболее широко известным способом квантования гравитации, отличным от теории струн. Как и общая единая теория Шрёдингера, петлевая квантовая гравитация подчеркивает важнейшую роль аффинной связности, которая несколько модифицируется и используется в качестве квантовых переменных. Пространство-время заменяется своеобразной геометрической пеной. Струнные теоретики часто указывают на то, что петлевая квантовая гравитация не является теорией всего, а просто предлагает способ квантования гравитации. Сторонники петлевой квантовой гравитации, в свой черед, утверждают, что теория струн рассматривает гравитацию и как фон (метрику пространства-времени, на фоне которой двигаются частицы), и как поле (гравитоны), а не как единое целое. Их цель — сперва понять квантовую гравитацию, а потом пытаться объединить ее с другими взаимодействиями.
Чтобы понять важнейшее значение теории струн, М-теории и петлевой квантовой гравитации, нам потребуется совершить экскурсию на планковский масштаб, микроскопическую область пространства, в которой встречаются квантовая теория и гравитация. Однако достижение столь огромных энергий лежит далеко за пределами наших сегодняшних технических возможностей. К счастью, в физике высоких энергий часто имеются низкоэнергетические следствия. Большой адронный коллайдер вполне может обнаружить такие состояния частиц, которые позволят заглянуть за пределы физики Стандартной модели. Примером могут служить частицы-суперпартнеры: суперпартнерами фермионов должны быть бозоны, и наоборот. Открытие таких частиц стало бы убедительным доказательством существования суперсимметрии, а также возможных кандидатов на звание темной материи. И хотя ни одна такая частица до сих пор не обнаружена, многие физики сохраняют надежду, что суперпартнеры однажды будут найдены и подробно изучены.
Быстрее света: поучительная история
Исследователи, студенты, научные фонды, поклонники науки, писатели и другие люди, которым интересно узнать, что же находится за пределами Стандартной модели, с нетерпением ждут хоть какого-то намека на новые необъяснимые явления. Столько времени и денег вложено в Большой адронный коллайдер и другие крупные научные эксперименты, что неудивительно, что у людей так много ожиданий относительно ошеломляющих результатов.
Физикам следует соблюдать осторожность и избегать поспешных заявлений о достигнутых успехах, какими бы многообещающими они ни казались. Группы ученых, которые обнаружили бозон Хиггса, терпеливо копили статистику, чтобы исключить другие возможности, даже несмотря на то, что на это ушло много месяцев. Они преподали урок настойчивости. Тем не менее иногда ученые торопятся делать заявления раньше, чем другие группы исследователей подтвердят полученные результаты.
Несмотря на то что фиаско Эйнштейна и Шрёдингера состоялось в 1940-х годах, его уроки актуальны и сегодня. Скудное финансирование часто требует от ученых доказывать значимость своих исследований, как правило, через выпуск пресс-релизов. Поспешное объявление о непроверенном открытии может оставить неприятное впечатление, которое подорвет доверие к будущим исследованиям в этой области. Даже если это заявление впоследствии будет опровергнуто, общественность еще долгое время будет вспоминать о нем как о реальном прорыве, а не как о ложном сообщении.
Возьмем, к примеру, заявление исследовательской группы, опубликованное в сентябре 2011 года, о том, что на экспериментальной установке в Гран-Сассо в Италии обнаружены частицы, движущиеся быстрее света. Большая часть научного сообщества сомневалась в достоверности этих результатов или, по крайней мере, отнеслась к ним настороженно, однако история получила широкое освещение в международной прессе. В СМИ начались дебаты о том, необходимо ли изменить постулаты специальной теории относительности. Репортеры интересовались, откроют ли полученные результаты дверь в новую физику за пределами Стандартной модели. Полностью игнорируя десятилетия экспериментов, подтверждающих специальную теорию относительности и ее требование предельно допустимой скорости, этот эксперимент преподносился в качестве «лакмусовой бумажки» для теории относительности и неприкосновенности принципа причинности. Например, в статье британской газеты Guardian сообщалось, что «ученые в лаборатории Гран-Сассо представили доказательства того, что существует возможность послать информацию назад во времени, стерев грань между прошлым и настоящим и разрушив основополагающий принцип причинности» {225}.