-->

Введение в электронику

На нашем литературном портале можно бесплатно читать книгу Введение в электронику, Гейтс Эрл Д.-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Введение в электронику
Название: Введение в электронику
Дата добавления: 16 январь 2020
Количество просмотров: 10 608
Читать онлайн

Введение в электронику читать книгу онлайн

Введение в электронику - читать бесплатно онлайн , автор Гейтс Эрл Д.

Книга известного американского специалиста в простой и доступной форме знакомит с основами современной электроники. Основная ее цель — теоретически подготовить будущих специалистов — электриков и электронщиков — к практической работе, поэтому кроме детального изложения принципов работы измерительных и полупроводниковых приборов, интегральных микросхем рассмотрены общие вопросы физики диэлектриков и полупроводников. Обсуждение общих принципов микроэлектроники, описание алгоритмов цифровой обработки информации сопровождается примерами практической реализации устройств цифровой обработки сигналов, описаны принципы действия и устройство компьютера. Книга снабжена большим количеством примеров, задач и упражнений, выполнение которых помогает пониманию и усвоению материала. Предназначена для учащихся старших курсов средних специальных учебных заведений радиотехнического профиля, а также будет полезна самостоятельно изучающим основы электроники.

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 67 68 69 70 71 72 73 74 75 ... 120 ВПЕРЕД
Перейти на страницу:

Вблизи обедненного слоя электроны притягиваются материалом n-типа, создавая небольшое напряжение вдоль р-n-перехода. При увеличении интенсивности света это напряжение увеличивается. Однако не вся световая энергия, попадающая в солнечный элемент, создает свободные электроны. В действительности, при сравнении получаемой от него электрической мощности с мощностью падающей световой энергии легко увидеть, что солнечный элемент — это довольно неэффективное устройство с максимальным коэффициентом полезного действия порядка 15 %.

Солнечные элементы дают низкое выходное напряжение 0,45 вольта при токе 50 миллиампер. Их необходимо соединять в последовательно- параллельные цепи для того, чтобы получить желаемое выходное напряжение и ток.

Солнечные элементы применяются для измерения интенсивности света в фотографическом оборудовании, для декодирования звуковой дорожки в кинопроекторах и для зарядки батарей на космических спутниках.

Схематические обозначения солнечных элементов показаны на рис. 26-4. Положительный вывод обозначается знаком плюс (+).

Введение в электронику - _13.jpg_9

Рис. 26-4. Схематические обозначения солнечного элемента.

Фотодиод также использует р-n-переход и его устройство подобно устройству солнечного элемента. Он используется так же, как и фотосопротивление в качестве резистора, сопротивление которого меняется при освещении. Фотодиоды — это полупроводниковые устройства, которые изготовляются главным образом из кремния. Это делается двумя способами. Первый способ — создание простого р-n-перехода (рис. 26-5).

Введение в электронику - _15.jpg_10

Рис. 26-5. Фотодиод с р-n-переходом.

При другом способе между слоями p-типа и n-типа вставляется слой нелегированного полупроводника, образуя p-i-n фотодиод (рис. 26-6).

Введение в электронику - _14.jpg_8

Принципы работы фотодиода с р-n-переходом такие же как у солнечного элемента, за исключением того, что он используется для управления током, а не для создания его.

К фотодиоду прикладывается обратное напряжение смещения, формирующее широкий обедненный электронами слой. Когда свет попадает в фотодиод, он попадает в обедненный слой и создает там свободные электроны. Электроны притягиваются к положительному выводу источника смещения. Через фотодиод в обратном направлении течет малый ток. При увеличении светового потока увеличивается число свободных электронов, что приводит к росту тока.

P-i-n фотодиод имеет слой нелегированного материала между областями р и n. Это эффективно расширяет обедненный слой. Более широкий обедненный слой позволяет p-i-n фотодиоду реагировать на свет с более низкими частотами. Свет с более низкими частотами имеет меньшую энергию и, следовательно, должен глубже проникать в обедненный слой перед созданием свободных электронов. Более широкий обедненный слой дает больше возможностей для создания свободных электронов, p-i-n фотодиоды являются более эффективными во всех отношениях.

Благодаря слою нелегированного материала, p-i-n фотодиоды имеют более низкую собственную емкость. Это обеспечивает быстрый отклик на изменения интенсивности света. Кроме того, изменение их обратного тока в зависимости от интенсивности является более линейным.

Преимущество фотодиода — его быстрый отклик на изменения интенсивности света, самый быстрый из всех фоточувствительных устройств. Недостаток — низкая выходная мощность по сравнению с другими фоточувствительными устройствами.

На рис. 26-7 изображен типичный корпус фотодиода. Стеклянное окошко позволяет свету попадать в фотодиод. Схематическое обозначение фотодиода показано на рис. 26-8. Типичная цепь изображена на рис. 26-9.

Введение в электронику - _16.jpg_9

Рис. 26-7. Корпус фотодиода.

Введение в электронику - _17.jpg_9

Рис. 26-8. Схематическое обозначение фотодиода.

Введение в электронику - _18.jpg_9

Рис. 26-9. Делитель напряжения, использующий фотодиод.

Фототранзистор устроен подобно другим транзисторам с двумя р-n-переходами. Он похож на стандартный n-р-n транзистор. Используется так же, как и фотодиод, и имеет корпус как у фотодиода, за исключением того, что у него три вывода (эмиттер, база и коллектор). На рис. 26–10 показана его эквивалентная цепь.

Введение в электронику - _19.jpg_9

Рис. 26–10. Эквивалентная схема фототранзистора.

Проводимость транзистора зависит от проводимости фотодиода. Вывод базы применяется редко. Когда он все же используется, на него подается напряжение, открывающее транзистор.

Фототранзисторы могут давать больший выходной ток, чем фотодиоды. Их отклик на изменения интенсивности света не так быстр, как у фотодиодов. В данном случае за увеличение выходного тока приходится жертвовать скоростью отклика.

Фототранзисторы применяются в фототахометрах, для управления фотографической экспозицией, в противопожарных датчиках, в счетчиках предметов и в механических позиционерах.

На рис. 26–11 изображено схематическое обозначение фототранзистора. На рис. 26–12 изображена типичная схема его применения.

Введение в электронику - _20.jpg_11

Рис. 26–11. Схематическое обозначение фототранзистора.

Введение в электронику - _21.jpg_11

Рис. 26–12. Переключатель нагрузки, питаемой постоянным током, зависящий от освещения (при отсутствии света нагрузка включена).

26-2. Вопросы

1. Объясните, как работает фоторезистор.

2. Объясните, как работает солнечный элемент.

3. В чем разница между двумя типами фотодиодов?

4. Чем фототранзистор лучше фотодиода?

5. Нарисуйте схематические обозначения фоторезистора, солнечного элемента, фотодиода и фототранзистора.

26-3. СВЕТОИЗЛУЧАЮЩИЕ УСТРОЙСТВА

Светоизлучающие устройства излучают свет при прохождении через них тока, преобразуя электрическую энергию в световую. Светоизлучающий диод (светодиод) — это наиболее распространенное полупроводниковое светоизлучающее устройство. Будучи полупроводниковым устройством, он имеет неограниченный срок службы ввиду отсутствия высокотемпературного нагрева, основной причины выхода из строя обычных ламп.

Любой р-n-переход может испускать свет при прохождении через него тока. Свет возникает, когда свободные электроны рекомбинируют с дырками, и лишняя энергия освобождается в виде света. Частота испускаемого света определяется типом полупроводникового материала, использованного при изготовлении диода. Обычные диоды не излучают свет потому, что они упакованы в непрозрачные корпуса.

1 ... 67 68 69 70 71 72 73 74 75 ... 120 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название