-->

Курс истории физики

На нашем литературном портале можно бесплатно читать книгу Курс истории физики, Степанович Кудрявцев Павел-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Курс истории физики
Название: Курс истории физики
Дата добавления: 16 январь 2020
Количество просмотров: 401
Читать онлайн

Курс истории физики читать книгу онлайн

Курс истории физики - читать бесплатно онлайн , автор Степанович Кудрявцев Павел
Курс истории физики

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 62 63 64 65 66 67 68 69 70 ... 158 ВПЕРЕД
Перейти на страницу:

Ампер различает два основных электрических понятия: электрическое напряжение и электрический ток. Под электрическим током Ампер понимает «состояние электричества в цепи проводящих и электродвижущих тел»; под его направлением — направление положительного электричества. Внутри вольтова столба это будет «направление от конца, на котором при разложении воды выделяется водород, к концу, на котором выделяется кислород». «...Направление электрического тока в проводнике, соединяющем концы столба, будет обозначать направление от конца, где выделяется кислород, к концу, где выделяется водород». Следовательно, Ампер вводит впервые такие фундаментальные понятия, как «электрический ток», «электрическая цепь», устанавливает направление тока в замкнутой цепи. Наименование единицы тока ампер, принятое в физике, вполне оправдано заслугами Ампера. Он же вводит термин «гальванометр» для прибора, действие которого основано на отклонении магнитной стрелки, и указывает, что «им следует пользоваться при всех опытах с электрическими токами, как принято пользоваться электрометром при электрических машинах, чтобы видеть в каждый момент, существует ли ток и какова его энергия».

Ампер впервые установил наличие механических взаимодействий токов, которые могут быть в зависимости от направления как притягательными, так и отталкивательными. Он подчеркивает, что «эти притяжения и отталкивания... существенно отличаются от тех, которые вызываются электричеством в состоянии покоя».

Исследуя экспериментально электродинамические взаимодействия, Ампер приходит к выводу, что путем комбинации проводников и магнитных стрелок можно «устроить своего рода телеграф с помощью одного вольтова столба, расположенного вдали от стрелок». Так, идея электромагнитного телеграфа возникла в первый же год открытия электромагнетизма.

Она разрабатывалась рядом изобретателей и ученых. В 1829 г. русский дипломат П. Л. Шиллинг (1786—1837) сконструировал телеграфный аппарат, дающий возможность передавать русские буквы и цифры с помощью шести мультипликаторов. Аппарат Шиллинга был установлен в Зимнем дворце.

В 1833 г. Гаусс и Вебер построили телеграфную линию в Геттингене, соединяющую астрономическую и физическую лаборатории. Существовали и другие системы, в частности система русского физика Б. С. Якоби (1801—1874). Однако широкое распространение электромагнитный телеграф получил после того, как американский изобретатель Самуил Морзе (1791—1872) создал удобную конструкцию аппарата, разработал схему соединения отравительной и приемной станции и изобрел специальную азбуку с двумя знаками (точка — тире). Первый аппарат Морзе был построен в 1835 г., а в 1844 г. заработала телеграфная линия Вашингтон — Балтимор.

Возвращаемся к исследованиям Ампера. Очень скоро он пришел к мысли об эквивалентности магнитного листка круговому току и разработал представление о магните «как о совокупности электрических токов, расположенных в плоскостях, перпендикулярных к линии, соединяющей полюсы магнита». Отсюда он пришел к выводу, что спираль, обтекаемая током (соленоид), будет эквивалентна магниту. Это привело Ампера к мысли об отсутствии магнитных агентов («магнитных жидкостей») в природе и о возможности свести все явления магнетизма к электродинамическим взаимодей ствиям. Амперова молекулярная тео рия магнетизма получила физическугс опору в электронной физике уже в XX в.

Обобщающим трудом Ампера была «Теория электродинамических явлений, выведенная исключительно из опыта», изданная в 1826 г. с подзаголовком «Произведение, в котором собраны труды г. Ампера, доложенные им Королевской Академии наук в заседаниях от 4 и 26 декабря 1820 г., 10 июня 1822 г., 22 декабря 1823 г., 12 сентября и 28 ноября 1825г.».

Он поставил перед собой задачу, основываясь на опыте, вывести формулу взаимодействия элементов тока. Задача была нелегкой. Опыт давал только интегральное взаимодействие. Ампер варьировал опыты с взаимодействием токов, пытаясь нащупать правильную формулу и, интегрируя ее для различных случаев конечных контуров тока, сравнить результат с опытом, формула Ампера открывает длинный ряд элементарных законов электродинамики.

Важно, что элементарные взаимодействия двух элементов тока не удовлетворяют третьему закону Ньютона, это новый тип взаимодействия, отличный от обычных центральных сил. Впрочем, то обстоятельство, что физика открыла новый тип сил, отличный от гравитационных, электростатических и магнитных сил, было ясно уже из опыта Эрстеда. Электродинамические силы, как правильно заметил Ампер, новые силы, отличные от сил, известных в электростатике. Однако сам Ампер искал свой закон, опираясь на третий закон механики. Он полемизировал с Био, установившим, что силы, действующие со стороны элемента тока на магнитный полюс, образуют пару с силой, действующей со стороны полюса на элемент тока. Так началась проблема закона сохранения количества движения в электродинамике. Ампер еще не подозревал о существовании поля, о запаздывании электромагнитных действий. Он стоял на позициях дальнодействия, что для постоянных токов было допустимо. Но ему и его современникам уже пришлось столкнуться с новыми фактами, трудно объяснимыми при помощи ньютоновских представлений.

Курс истории физики - img_107.jpeg

Курс истории физики - img_108.jpeg

Рис. 36. Станок Ампера

Эрстед, а затем и Фарадей ясно увидели вихревой характер магнитного поля. В 1821 г. фарадей доказал экспериментально, что отдельный магнитный полюс, помещенный вблизи проводника с током, приходит в непрерывное вращение. Ему пришлось проявить немало изобретательности, чтобы придумать такое расположение проводников и магнита, чтобы действию тока подвергался только один полюс. Магнит в опыте фарадея вращался безостановочно, пока цепь была замкнута. Это была первая модель электродвигателя.

Как всегда бывает в науке, когда открывается новое поле исследования, появляется большое количество экспериментаторов и изобретателей, возникают бесчисленные споры о приоритете того или иного открытия. Имена этих экспериментаторов и изобретателей ныне забыты или полузабыты, фарадею пришлось выдержать длительный спор о приоритете в открытии электромагнитных вращений. Сначала его обвинял учитель Дэви в заимствовании идеи у Волластона, спустя много лет после смерти Дэви обвинения повторил его брат. Такие споры, отравляющие жизнь многим выдающимся ученым, неизбежны, когда «идеи носятся в воздухе». Время в конце концов выносит окончательный приговор.

Из многочисленных открытий и изобретений в области электричества, сделанных в 20-е годы XIX в., следует упомянуть об открытии в 1821 г. термоэлектричества. Оно принадлежит прибалтийскому физику Томасу Зеебеку (1770—1831). Это открытие стало возможным благодаря открытию Эрстеда и некоторое время даже именовалось термомагнетизмом. В свою очередь, открытие Зеебека и изобретение мультипликатора дали возможность немецкому учителю Георгу Ому (1787—1854) открыть количественный закон цепи электрического тока, носящий ныне его имя.

Опыты и теоретические рассуждения Ома, который находился под сильным влиянием вышедшего в 1822 г. сочинения Фурье (1768—1830) «Аналитическая теория тепла», были описаны им в основном труде «Гальваническая цепь, разработанная математически» (1827). Следует отметить, что этот закон, без которого мы сейчас не представляем себе учебника электричества, не сразу был принят физиками и стал входить в науку только в конце 30-х — начале 40-х годов XIX в. Его признание шло параллельно с успехами электрометрии. Одним из первых принял и применил закон Ома русский академик Э.Х.Ленц, который рассматривал и вопросы распределения тока в разветвленных проводниках, явившись предшественником Кирхгофа. Ленц занимался также изучением электромагнитов, впервые на основе опытов Араго и теории Ампера созданных Вильямом Стерд-женом (1783-1850) в 1825 г. Электромагниты с большой подъемной силой были построены американским физиком Джозефом Генри (1799—1878), независимо от фарадея открывшим электромагнитную индукцию. Однако его публикация об этом открытии запоздала, и слава великого открытия принадлежит Михаилу фарадею.

1 ... 62 63 64 65 66 67 68 69 70 ... 158 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название