-->

Этот «цифровой» физический мир (СИ)

На нашем литературном портале можно бесплатно читать книгу Этот «цифровой» физический мир (СИ), Гришаев Андрей Альбертович-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Этот «цифровой» физический мир (СИ)
Название: Этот «цифровой» физический мир (СИ)
Дата добавления: 16 январь 2020
Количество просмотров: 176
Читать онлайн

Этот «цифровой» физический мир (СИ) читать книгу онлайн

Этот «цифровой» физический мир (СИ) - читать бесплатно онлайн , автор Гришаев Андрей Альбертович

Трагедия многих талантливых одиночек, которые пытаются переосмыслить или даже подредактировать официальную физическую картину мира, заключается в том, что они основывают свои построения отнюдь не на экспериментальных реалиях. Талантливые одиночки читают учебники – наивно полагая, что в них изложены факты. Отнюдь: в учебниках изложены готовенькие интерпретации фактов, адаптированные под восприятие толпы. Причём, эти интерпретации выглядели бы очень странно в свете подлинной экспериментальной картины, известной науке. Поэтому подлинную экспериментальную картину намеренно искажают – в книге приведено множество свидетельств о том, что ФАКТЫ частью замалчиваются, а частью перевраны. И ради чего? Ради того, чтобы интерпретации выглядели правдоподобно – будучи в согласии с официальными теоретическими доктринами. На словах у учёных мужей получается красиво: ищем, мол, истину, а критерий истины – практика. А на деле у них критерием истины оказываются принятые теоретические доктрины. Ибо, если факты не вписываются в такую доктрину, то перекраивают не теорию, а факты. Ложная теория оказывается подтверждена лживой практикой. Зато самолюбие учёных не страдает. Мы, мол, верной дорогой шли, идём, и идти будем! Это не очередная «теория заговора». Просто каждый учёный понимает, что если он «попрёт против течения», то он будет рисковать репутацией, карьерой, финансированием… Успехи современных технологий не имеют к физическим теориям почти никакого отношения. Раньше мы были хорошо знакомы с ситуацией, когда на глючном и сбойном программном обеспечении иногда удавалось сделать что-то полезное. Выясняется, что достойную конкуренцию продукции крутых парней из Рэдмонда могут составить физические теории. Например, Эйнштейн тормознул физику своими творениями конкретно лет на сто. И атомную бомбу сделали не благодаря теории относительности, а вопреки ей. Но проблема не только лично в Эйнштейне с эпигонами, которые вслед за мэтром принялись наперебой навязывать реальности свои надуманные «аксиомы» и «постулаты», «наваривая» на этом «научную репутацию» и «конкретные бабки». Всё гораздо серьезнее. Добро пожаловать в реальный, то есть, «цифровой» физический мир!

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 60 61 62 63 64 65 66 67 68 ... 93 ВПЕРЕД
Перейти на страницу:

Теперь заметим, что энергию связи Eат в одной атомарной связке «протон-электрон» можно выразить тремя способами: через дефект масс связанных компаньонов, через частоту атомных прерываний, и через энергию циклических перебросов энергии электронных пульсаций из электрона в протон и обратно. Получаем:

Eат = 2Δmc2 = 2hΩат = hK/2rат , (4.9.1)

где Δm – дефект массы у электрона и у протона из-за прерываний их электронных пульсаций, h - постоянная Планка, Ωат - частота атомных прерываний, rат - расстояние между протоном и центром области удержания электрона, и K - множитель, имеющий размерность скорости. Для основных, невозбуждённых, состояний атомарных электронов множитель K равен 700 км/с – эта величина, поразительным образом, совпадает со значением, которое Н.А.Козырев называл «скоростью перехода причины в следствие» или «ходом времени».

У многоэлектронных атомов, все атомарные связки «протон-электрон» удерживаются с помощью разных частот атомных прерываний – что даёт, соответственно, разные энергии связи и разные расстояния rат электрона от ядра. Известно, что при последовательном отрывании электронов от атома, дающем всё более высокие степени его ионизации, энергия каждого последующего отрывания всегда заметно больше, чем энергия предыдущего [Т1]. Ортодоксы полагают, что это обусловлено тем, что, по мере роста степени ионизации, отрыв очередного электрона затрудняется его взаимодействием с растущим избыточным положительным зарядом ядра. Такое объяснение странным образом игнорирует тот факт, что энергии выбивания тех же самых электронов из нейтрального атома – электронами, ультрафиолетовым и рентгеновским излучениями – совпадают с энергиями последовательных ионизаций. Это означает, что энергии последовательных ионизаций представляют собой в чистом виде энергии связи соответствующих электронов, и для определения их расстояния от центра атома можно использовать формулу (4.9.1). Кстати, экспериментальные атомные радиусы [Т1] практически не растут по мере роста атомного номера - и, значит, наращивание электронных оболочек происходит «вглубь» атома. Оценивая, с помощью формулы (4.9.1), расстояния от центра атома для самых сильно связанных (~100 кэВ) электронов, можно видеть: популярный тезис о том, что «атом состоит в основном из пустоты», не всегда справедлив, поскольку, по мере роста атомного номера, в атоме становится довольно-таки тесно. У тяжёлых элементов, самые сильно связанные электроны, из К-оболочки, «сидят» чуть ли не на самом ядре!

Теперь заметим: из формулы (4.9.1) следует, что в возбуждённых стационарных состояниях атомарной связки «протон-электрон», имеющих место при уменьшенных частотах атомных прерываний и соответственно уменьшенных энергиях связи, расстояние rат электрона от ядра больше, чем в основном состоянии. Однако, вывод о том, что, при возбуждении атома, его радиус увеличивается, трудно согласовать с экспериментальными фактами.

Во-первых, если этот вывод был бы справедлив, то он приводил бы, в ряде случаев, к весьма завышенным коэффициентам линейного теплового расширения твёрдых тел – по сравнению с теми значениями, которые обнаруживаются на опыте. Действительно, атом в условиях теплового равновесия имеет среднюю энергию возбуждения, соответствующую максимуму равновесного теплового спектра. При увеличении температуры этот максимум сдвигается, увеличивая среднюю энергию возбуждения атома; оценим соответствующее увеличение атомного радиуса. Из сопоставления потенциалов ионизации и атомных радиусов [Т1] следует, что атомный радиус увеличивается вдвое при уменьшении энергии связи, в среднем, примерно на 9 эВ. А, согласно закону смещения Вина, сдвиг максимума равновесного теплового спектра соответствует приращению энергии ~5kΔT, где k – постоянная Больцмана, ΔT – приращение абсолютной температуры. Тогда, без учёта тепловых колебаний ядер, а единственно из-за теплового увеличения атомных радиусов, коэффициент линейного теплового расширения – особенно у тела, состоящего из однотипных одновалентных атомов – составлял бы примерно 100·10-6 град-1. Между тем, у многих металлов эта характеристика на порядок меньше.

Во-вторых, рассмотрим случай прохождения мощного коллимированного светового луча сквозь твёрдый образец, не являющийся идеально прозрачным, так что створ луча в образце отлично виден из-за бокового рассеяния. Это рассеяние говорит о том, что часть атомов (или молекул) в створе луча пребывает в возбуждённом состоянии – перед тем как переизлучить поглощённый квант. Соответствующее увеличение атомного радиуса (или размера молекулы), в случае кванта из сине-зелёной области, составляло бы, ориентировочно, 30% - но образец-то не разрушается! От этого парадокса не отмахнуться допущением того, что структура твёрдого тела и его оптические свойства обеспечиваются разными атомарными электронами. Ведь существуют полупрозрачные вещества – поваренная соль, например – состоящие только из одновалентных атомов, которые имеют только по одному электрону для обеспечения как структуры, так и оптических свойств.

Таким образом, нам придётся сделать вывод о том, что размеры атомарной связки «протон-электрон» в её возбуждённых стационарных состояниях равны её размеру в основном состоянии. Такое постоянство атомного радиуса легко обеспечивается программными средствами: требуется всего лишь задать, для каждого стационарного возбуждённого состояния, своё значение множителя K (см. (4.9.1)), который играет роль коэффициента пропорциональности между временными и пространственными масштабами, характерными для связующего алгоритма.

По логике вышеизложенного, у многоэлектронных атомов расстояния от ядра, на которых находятся области удержания электронов, жёстко заданы. Что же касается взаимного расположения этих областей удержания, то здесь, по-видимому, допускается некоторая вариабельность.

4.10. Нейтрон: структурная связь на приросте масс.

Проблема массы нейтрона – это вопиющая проблема в физике. Распад нейтрона свидетельствует о том, что строение нейтрона обеспечивается не с помощью дефекта масс. Действительно, продуктами распада нейтрона являются протон и электрон (и, как полагают, ещё антинейтрино, масса которого пренебрежимо мала). Масса же свободного нейтрона, как полагают, больше массы свободного протона на 2.5 массы электрона [М3]. Выходит, что масса нейтрона на полторы массы электрона больше суммы масс стабильных продуктов своего распада. Тогда, по традиционной логике, нейтрон должен быть весьма нестабильным объектом. Свободный нейтрон обязан распадаться за время, сравнимое с характерными ядерными временами – т.е., по практическим меркам, мгновенно. Между тем, измерения среднего времени жизни нейтронов, вылетающих из ядерных реакторов, дают величину около 17 мин (см., например, [М3,К7]).

Напротив, в модели нейтрона, следующей из логики «цифрового» мира, подобных противоречий нет. Мы постараемся показать, что нейтрон может иметь массу, которая больше суммы масс протона и электрона не на 1.5, а на 0.5 массы электрона, а также опишем работу алгоритма, который связывает компоненты в нейтроне таким образом, что результатом является прирост массы, равный как раз половине массы электрона.

Неточность знания массы нейтрона может быть обусловлена тем, что масса нейтральной частицы не может быть определена с помощью масс-спектрометров, т.е. через измерение отношения заряда к массе, и поэтому все определения массы нейтрона были косвенными.

Открыватель нейтрона Чедвик устранил проблемы с законами сохранения энергии-импульса для случая проникающего излучения, возникающего при бомбардировке бериллия α-частицами – допустив, что это излучение является не высокоэнергичными гамма-квантами, как полагали ранее, а потоком нейтральных частиц с массами, близкими к массе протона (см., например, [С1]). Полученное при этом значение массы нейтрона, 1.15, значительно превышало массу протона, 1.00768, при массе электрона 0.00055 (мы приводим значения в атомных единицах массы по кислородной шкале, использовавшейся до 1961 г.).

1 ... 60 61 62 63 64 65 66 67 68 ... 93 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название