Введение в электронику
Введение в электронику читать книгу онлайн
Книга известного американского специалиста в простой и доступной форме знакомит с основами современной электроники. Основная ее цель — теоретически подготовить будущих специалистов — электриков и электронщиков — к практической работе, поэтому кроме детального изложения принципов работы измерительных и полупроводниковых приборов, интегральных микросхем рассмотрены общие вопросы физики диэлектриков и полупроводников. Обсуждение общих принципов микроэлектроники, описание алгоритмов цифровой обработки информации сопровождается примерами практической реализации устройств цифровой обработки сигналов, описаны принципы действия и устройство компьютера. Книга снабжена большим количеством примеров, задач и упражнений, выполнение которых помогает пониманию и усвоению материала. Предназначена для учащихся старших курсов средних специальных учебных заведений радиотехнического профиля, а также будет полезна самостоятельно изучающим основы электроники.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Глава 22. САМОПРОВЕРКА
1. Переход транзистора может быть смещен в прямом направлении, в обратном направлении или быть несмещенным. Каковы нормальные условия смещения переходов эмиттер-база и коллектор-база в транзисторе?
2. Какое сопротивление должен показывать каждый переход при проверке исправного транзистора с помощью омметра?
3. Какие трудности возникают при определении типа материала и идентификации выводов эмиттера, коллектора и базы неизвестного транзистора при его проверке с помощью омметра?
4. Почему необходимо знать тип проводимости транзистора (n-р-n или р-n-р) при его подключении в цепь?
5. Чем отличается проверка транзистора с помощью омметра от проверки с помощью прибора для проверки транзисторов?
Глава 23. Полевые транзисторы
ЦЕЛИ
После изучения этой главы студент должен быть в состоянии:
• Описать разницу между транзисторами, полевыми транзисторами с р-n-переходом и полевыми транзисторами с изолированным затвором (МОП-транзисторами).
• Нарисовать схематические обозначения полевых транзисторов с р-n-переходом и каналом n- и p-типа проводимости, а также полевые транзисторы с изолированным затвором обедненного и обогащенного типа.
• Описать, как работают полевые транзисторы с р-n-переходом и полевые транзисторы с изолированным затвором обедненного и обогащенного типа.
• Перечислить составные части полевых транзисторов с р-n-переходом и полевых транзисторов с изолированным затвором.
• Описать меры предосторожности, которые необходимо соблюдать при работе с полевыми транзисторами с изолированным затвором.
• Описать процедуру проверки полевых транзисторов с р-n-переходом и полевых транзисторов с изолированным затвором с помощью омметра.
История полевых транзисторов начинается с 1925 года, когда Юлиус Лилленфелд изобрел полевой транзистор (р-n-переходом и полевой транзистор с изолированным затвором. Оба этих устройства доминируют в настоящее время в электронной технологии. Эта глава является введением в теорию полевых транзисторов с р-n-переходом и полевых транзисторов с изолированным затвором.
Полевой транзистор с р-n-переходом — это униполярный транзистор, в котором работают только основные носители.
Полевой транзистор с р-n-переходом — это устройство, управляемое напряжением. Полевые транзисторы с р-n-переходом состоят из полупроводниковых материалов n- и p-типа и способны усиливать электронные сигналы, а конструкция отличается от конструкции биполярных транзисторов, и их работа основана на других принципах. Знание конструкции полевых транзисторов с р-n-переходом помогает понять, как они работают.
Конструкция полевых транзисторов с р-n-переходом начинается с подложки, или базы, слабо легированного полупроводникового материала. Подложка может быть из материала n- или p-типа. р-n-переход в подложке изготовляется как методом диффузии, так и методом выращивания (см. главу 20). Форма р-n-перехода играет важную роль. На рис. 23-1 показано сечение встроенной области в подложке. U-образная область называется каналом, она утоплена по отношению к верхней поверхности подложки.
Рис. 23-1. Сечение полевого транзистора с р-n-переходом и каналом n-типа.
Когда канал сделан из материала n-типа в подложке из материала p-типа образуется полевой транзистор с каналом n-типа. Когда канал сделан из материала p-типа в подложке из материала n-типа образуется полевой транзистор с каналом р-типа.
Полевой транзистор с р-n-переходом имеет три вывода (рис. 23-2). Один вывод соединен с подложкой и образует затвор (3). Выводы, соединенные с концами канала образуют исток (И) и сток (С). Неважно какой из выводов соединен со стоком, а какой с истоком, так как канал симметричен.
Рис. 23-2. Подсоединение выводов полевого транзистора с р-n-переходом и каналом n-типа.
Работа полевых транзисторов с р-n-переходом требует двух внешних источников смещения. Один из источников (ЕСИ) подсоединяется между стоком и истоком, заставляя ток течь через канал. Другой источник (ЕЗИ) подсоединяется между затвором и истоком. Он управляет величиной тока, протекающего через канал. На рис. 23-3 показан правильно смещенный полевой транзистор с каналом n-типа.
Источник тока ЕСИ подсоединяется таким образом, чтобы на истоке был отрицательный потенциал по отношению к стоку. Это обусловливает ток через канал, так как основными носителями в материале n-типа являются электроны. Ток, текущий от истока к стоку, называется током стока полевого транзистора (IC). Канал служит сопротивлением для приложенного напряжения (ЕСИ).
Напряжение затвор-исток (ЕЗИ) подается таким образом, чтобы затвор имел отрицательный потенциал по отношению к истоку. Это обусловливает формирование обратно смещенного р-n-перехода между затвором и каналом и создает обедненный слой в окрестности р-n-перехода, который распространяется вдоль всей длины канала. Обедненный слой шире у стока, так как напряжение ЕСИ складывается с напряжением ЕЗИ, создавая более высокое напряжение обратного смещения, чем у истока.
Рис. 23-3. Правильно смещенный полевой транзистор с р-n-переходом и каналом n-типа.
Размером обедненного слоя управляет напряжение ЕЗИ. При увеличении ЕЗИ толщина обедненного слоя увеличивается. При уменьшении толщина обедненного слоя уменьшается. При увеличении толщины обедненного слоя резко уменьшается толщина канала, и, следовательно, уменьшается величина тока, проходящего через него. Таким образом, ЕЗИ можно использовать для управления током стока (IC), который протекает через канал. Увеличение ЕЗИ уменьшает IC.
При обычной работе входное напряжение прикладывается между затвором и истоком. Результирующим выходным током является ток стока (IC). В полевом транзисторе с р-n-переходом входное напряжение используется для управления выходным током. В обычном транзисторе входной ток, а не напряжение используется для управления выходным током.
Поскольку переход затвор-исток смещен в обратном направлении, полевой транзистор с р-n-переходом имеет очень высокое входное сопротивление. Если переход затвор-исток сместить в прямом направлении, через канал потечет большой ток, что послужит причиной падения входного сопротивления и уменьшения усиления транзистора. Величина напряжения, требуемого для уменьшения IС до нуля, называется напряжением отсечки затвор-исток (ЕЗИотс). Это значение указывается производителем транзистора.
Напряжение сток-исток (ЕСИ) управляет размером обедненного слоя в полевых транзисторах с р-n-переходом. При увеличении ЕСИ, увеличивается также IС. При некотором значении ЕСИ величина IС перестает расти, достигая насыщения при дальнейшем увеличении ЕСИ. Причиной этого является увеличившийся размер обедненного слоя, и значительное уменьшение в канале неосновных носителей. С увеличением ЕСИ увеличивается, с другой стороны, сопротивление канала, что также приводит к меньшей скорости увеличения IС. Однако рост тока IС ограничивается вследствие расширения обедненного слоя и уменьшения ширины канала. Когда это имеет место, говорят, что IС достиг насыщения. Значение ЕСИ, при котором IС достигает насыщения, называется напряжением насыщения (ЕН). Величина ЕН обычно указывается производителем при значении ЕЗИ, равном нулю. При ЕЗИ, равном нулю, величина ЕН близка к ЕЗИотс. Когда ЕН равно ЕЗИ, ток стока является насыщенным.