Приключения радиолуча
Приключения радиолуча читать книгу онлайн
Книга об одном из великих открытий в истории человечества — радиоволнах, о прошлом, настоящем и возможном будущем обширнейшей научно-технической отрасли — радиоэлектроники. Читатель также узнает о причудах радиоволн: радиолокационных миражах-«призраках», «ангелах», «летающих тарелках»; о том, вредны ли радиоизлучения…
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Почему ослепли радары? Что это — халатность операторов? Возможно. Но неоспорим еще и тот факт, что цели, летящие на предельно малых и малых высотах, бывает очень трудно обнаружить. (Зарубежные специалисты предельно малыми высотами считают высоты от нескольких метров до 30—40 метров, малыми — от 30— 40 метров до 100—300 метров, средними — 300—5000 метров, а большими — свыше 5000 метров.)
Все трудности порождаются влиянием земной (или, как ее еще называют, подстилающей) поверхности, будь то суша или море. И дело не только в том, что цель может скрытно подойти к охраняемому объекту, используя естественные укрытия, хотя и этот фактор очень важен. Ведь местные предметы, возвышенности служат неплохими экранами для радиоволн — за ними образуется область радиотени, где цели не обнаруживаются. Даже небольшие углы укрытия (углы, под которыми из центра антенны радара видна вершина местного предмета — дома, возвышенности и т. д.) приводят к резкому сокращению дальности обнаружения на малых высотах, а она и без того невелика из-за кривизны Земли.
Так, если антенна радара поднята над землей на 5 метров, то самолет, летящий на высоте 100 метров, при ровной местности, например над степью, может быть обнаружен на расстоянии около 50 километров. Если же имеются небольшие пригорки или местные предметы, создающие угол укрытия всего 15 минут, то дальность обнаружения снижается более чем вдвое — до 21 километра. Если же угол укрытия составит 30 минут, то цель может скрытно подойти на расстояние 11 километров. А если самолет снизится до 50 метров то его удастся обнаружить лишь в пяти-шести километрах.
Вот почему при выборе позиций радаров стремятся обеспечить как можно большую дальность прямой геометрической видимости. Приходится размещать антенну или саму РЛС на вышках, эстакадах и даже на… аэростатах, как, например, сделала одна из американских фирм для Саудовской Аравии. С высоты трех километров такая аэростатная станция может обнаружить самолет, летящий на высоте 50—60 метров, на расстоянии 260 километров. Наземная же станция с антенной, поднятой на высоту 20 метров, даже при абсолютно ровной местности могла бы обнаружить такую цель па расстоянии примерно 46 километров.
Приведенные цифры означают максимальную дальность обнаружения, то есть дальность прямой радиолокационной видимости, которая превышает прямую геометрическую видимость примерно на 15 процентов (из-за явления рефракции). Но вовсе необязательно, что цель будет обнаружена на этих рубежах. Свои коррективы вносит и другая особенность земной поверхности, а именно, ее способность довольно хорошо отражать радиоволны.
Когда самолет или крылатая ракета летят на большой высоте, то радиоволны доходят до них только по одному пути — прямой линии, соединяющей антенну радара с целью. Такая волна называется прямой, и только она одна может достичь летящих объектов. Если же цель летит на малой высоте, то картина меняется.
Проведем одну аналогию. Чтобы увидеть какой-либо предмет, надо прежде всего взглянуть в его направлении. Так и при обнаружении маловысотного самолета антенну «заставляют смотреть» вдоль поверхности земли. Если же мы что-либо рассматриваем, то видим одновременно не только заинтересовавший нас объект, но и другие предметы. Так и в случае обнаружения низколетящего самолета в «поле зрения» антенны попадается и столь близкая от него земная поверхность. И это соседство очень мешает.
Что же происходит, когда антенный луч «задевает» землю? Естественно, в месте соприкосновения он облучает ее, и притом сигналами довольно мощными. Часть энергии радиоволны поглощается землей или водой и превращается в тепло, а остальная часть переотражается от нее. В зависимости от степени неровности поверхности (например, состояния моря) преобладает зеркальное или диффузное переотражение радиоволн. Диффузная составляющая переотражений возникает за счет рассеяния радиоволн на неровностях подстилающей поверхности. Для сантиметровых волн такими неровностями могут быть трава, посевы зерновых, кустарник… Часть диффузно рассеянных волн принимается обратно антенной РЛС. Они проявляются в виде мешающих сигналов, которые маскируют сигнал от низколетящей цели. Даже при спокойном море есть едва заметная волнистость, которая служит причиной появления мешающих сигналов.
Но главная неприятность не от диффузных отражений, а от зеркальных: когда угол падения равен углу отражения. При ровной суше и штилевом море на ник приходится основная часть мощности радиоволны переотраженной подстилающей поверхности. И вот этот-то зеркальный луч тоже, наряду с прямым, достигает самолета. Таким образом, самолет облучается сразу двумя лучами — прямым и переотраженным от земли. А мы уже знаем, что в зависимости от разности фаз две волны могут или складываться, или вычитаться, то есть они могут усилить друг друга или ослабить, а могут и вообще погасить друг друга. Это явление, как мы помним, называется интерференцией.
Интерференция происходит в каждой точке пространства вблизи земной поверхности, как раз там, где «обитают» маловысотные цели. Области, где прямая и отраженная от земли волна складываются, чередуются с местами, где они вычитаются. Там, где волны складываются, они усиливают друг друга и обнаружение улучшается (эти области называются интерференционными максимумами), а где вычитаются — вероятность обнаружения падает (эти угломестные секторы называют интерференционными провалами). Получается, что цельная диаграмма направленности в вертикальной плоскости вблизи земли как бы дробится на множество интерференционных максимумов, где цель обнаруживается, перемежающихся с провалами, в которых цель исчезает. Интересно, что чем выше поднята антенна над землей и чем меньше длина волны, тем уже становятся интерференционные лепестки и провалы, тем чаще они чередуются, тем больше их число.
Во многих случаях диаграмма направленности с большим числом узких интерференционных лепестков предпочтительнее, чем с малым количеством широких лепестков, так как для каждой цели, летящей на постоянной высоте, непросматриваемые зоны получаются сравнительно узкими, и цель быстро выскакивает из них. Это еще одна из причин, почему антенну при обнаружении низколетящих целей стараются поднять как можно выше.
Величина интерференционных максимумов и глубина провалов зависит от того, сколь хорошо радиоволны отражаются подстилающей поверхностью. Качество отражения принято определять коэффициентом отражения. Если волна отражается полностью, то коэффициент отражения равен единице. Чем больше потери при отражении, тем меньше мощность отраженной волны, тем, соответственно, меньше коэффициент отражения.
Естественно, чем лучше отражается радиоволна от земли, тем сильнее интерференционная изрезанность диаграммы направленности, тем больше ее интерференционные максимумы, тем глубже провалы. Для спокойного моря величина коэффициента отражения больше, чем у большинства типов поверхности суши. Поэтому интерференционные явления над спокойным морем будут более резко выражены, чем над сушей. Исключения составляют гористые местности, где могут возникать непредсказуемые искажения диаграммы направленности.
Изрезанность диаграммы направленности антенны из-за влияния земли приводит к сильным колебаниям мощности сигнала, отраженного низколетящей целью. При попадании самолета в интерференционный провал происходит резкое ослабление или полное пропадание сигнала на входе радиолокационного приемника.
Но интерференция не только портит, но иногда и помогает обнаружить низколетящие и надводные цели. Ведь они обнаруживаются в основном первым интерференционным лепестком-максимумом. А чем выше поднята антенна, тем сильнее этот первый лепесток прижимается к земле, и дальность обнаружения в максимуме лепестка может возрасти в два раза по сравнению со случаем, если бы отраженный от земли луч отсутствовал. Это еще одна причина, почему для обнаружения маловысотных целей стараются поднять антенну как можно выше.
Но если цель опустится ниже максимума первого интерференционного лепестка, то дальность обнаружения резко упадет. Вступает в действие другой закон: мощность сигнала на входе приемника становится обратно пропорциональной дальности, возведенной в восьмую степень, а не в четвертую, как обычно. Даже увеличение мощности передатчика для обнаружения таких целей мало что дает — уж слишком быстро падает уровень сигнала с ростом дальности: в минус восьмой степени.