Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания читать книгу онлайн
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.
Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.
Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг. В круг его интересов попадает всё — время и пространство, множественные измерения, темные материя и энергия, космология. Его последняя книга повествует о том, как Альберт Эйнштейн и Эрвин Шрёдингер сражались с несовершенством и недетерминированностью квантовой механики, пытаясь создать теорию поля, которая объединила бы все силы природы и потеснила квантовую странность. К сожалению, оба потерпели фиаско.
Сможет ли кто-то из современных ученых превзойти гениев прошлого? Найдется ли новый Эйнштейн, который сможет воплотить его мечту о единой физической теории в жизнь?
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Как возникает интерес к математике длиною в жизнь? Иногда просто благодаря элегантным чертежам и логичным доказательствам в учебнике геометрии.
Странные параллели
В 1891 году во время обучения в Луитпольдовской гимназии в возрасте 12 лет у Эйнштейна появился учебник по геометрии. Для него это было чудо, сопоставимое с компасом, которое привносило уютный порядок в ежедневную суету. Позже он называл этот учебник «священным писанием». Доказательства, основанные на четких, неоспоримых утверждениях, показывали, что за грохотом конных трамваев, неуклюжими тележками с едой и праздничным гвалтом выпивох Мюнхена скрывалась тихая незыблемая истина. «Эта ясность и точность произвели неописуемое впечатление на меня», — вспоминал он {13}.
Некоторые из приведенных в учебнике утверждений казались ему очевидными. Он уже знал теорему Пифагора для прямоугольных треугольников: сумма квадратов длин двух перпендикулярных сторон (катетов) равна квадрату длины третьей стороны (гипотенузы). В учебнике говорилось, что если изменить один из острых углов (тех, что меньше 90 градусов), то длины сторон тоже должны измениться. Это казалось ему очевидным и без доказательства.
Однако другие геометрические утверждения были не столь прозрачны. Эйнштейну нравилось, как методично в учебнике доказывались теоремы, которые не были очевидными, но оказывались верными. Например, утверждение, что все высоты треугольника (отрезки, проведенные из вершин треугольника перпендикулярно его сторонам) должны пересечься одной в точке. Его не волновало, что доказательства в учебнике были основаны в конечном итоге на недоказуемых аксиомах и постулатах. Он был готов смириться с несколькими безусловными аксиомами ради награды в виде множества доказанных теорем.
Геометрия на плоскости (планиметрия), описанная в учебнике, уходит своими корнями более чем на две тысячи лет назад к работам древнегреческого математика Евклида. Его «Начала» структурировали геометрическое знание в десятках теорем и их следствий, которые последовательно выводились всего из пяти аксиом и пяти постулатов. Все аксиомы и постулаты представляют собой утверждения; принимаемые без доказательства. К примеру: «часть меньше целого» или «равные одному и тому же равны и между собой». Однако пятый постулат; касающийся углов; не был таким очевидным.
«Если прямая; пересекающая две прямые; образует внутренние односторонние углы; меньшие двух прямых углов; тс»; продолженные неограниченно; эти две прямые встретятся с той стороны; где углы меньше двух прямых» {14}. Другими словами; нарисуйте три прямые так; чтобы две из них пересекали третью и чтобы обращенные Друг к другу углы были меньше 90°. Если продлить прямые на достаточное расстояние; то в конце концов они должны пересечься и образовать треугольник. То есть если один угол 89° и второй тоже 89° то третий угол; под которым эти прямые пересекутся; образовав очень вытянутый треугольник; составит 2°.
Математики предполагают; что пятый постулат был добавлен последним; так как Евклид пытался вывести его с помощью других аксиом и постулатов; но не смог. И действительно, первые 28 теорем в «Началах» доказываются с использованием лишь четырех первых постулатов, и только в доказательстве последующих теорем Евклид начинает использовать пятый постулат. Как будто опытный клавишник-виртуоз; отыграв 28 песен на концерте; понял; что для идеального звучания 29-й песни не хватает гитары. Иногда имеющихся инструментов недостаточно для того; чтобы завершить произведение; и необходимо импровизировать и привносить что-то новое.
Пятый постулат Евклида стал известен как «аксиома параллельных прямых» во многом благодаря работам шотландского математика Джона Плейфэра. Он предложил иную формулировку пятого постулата; которая хоть и не является полностью логически эквивалентной исходной; играет ту же роль в доказательствах теорем. По версии Плейфэра; на плоскости через точку, не лежащую на данной прямой, можно провести одну, и только одну прямую, параллельную данной.
На протяжении многих веков ученые пытались вывести пятый постулат (в формулировке и Евклида, и Плейфэра) из первых четырех.
Странные параллели
Даже известный персидский поэт и философ Омар Хайям не избежал попыток превратить этот постулат в доказанную теорему. В конечном итоге математическое сообщество пришло к выводу, что пятый постулат полностью независим, и отказалось от попыток его доказать.
Когда Эйнштейн изучал учебник геометрии, он и не подозревал о противоречиях и научных спорах вокруг пятого постулата. Более того, он разделял многовековое убеждение, что евклидова геометрия является сакрально-неприкосновенной. Ее аксиомы и теоремы казались такими же незыблемыми, вечными и изящными, как баварские Альпы.
Однако далеко к северу от Мюнхена, в маленьком университетском городке Гёттингене математики решились на смелый эксперимент по изменению геометрии. Каменное святилище мыслительной деятельности стало территорией радикального реформирования математики. Результат этого эксперимента был назван неевклидовой геометрией. Новый подход к геометрии имел еще меньше общего с традиционным, чем психоделические постеры Питера Макса с полотнами Рембрандта. Пока Эйнштейн изучал старые правила для точек, прямых и фигур на плоскости, гениальные математики, в числе которых был Феликс Клейн, приехавший в Гёттинген из Лейпцига, разрабатывали намного более гибкий подход, описывающий геометрические соотношения на искривленных и перекрученных поверхностях. Самое шокирующее его творение, бутылка Клейна, — это нечто напоминающее вазу, в которой внутренняя и внешняя двумерные поверхности соединены изгибом в более высоком измерении. Таких ужасающих фигур-монстров еще не было в учебниках, где нерушимые законы евклидовой геометрии исключали подобные кошмары. Но Клейн показал, что и евклидова и неевклидова геометрии математически равноправны. К1890-м годам его революционное видение открыло когда-то элитный клуб геометрических фигур не только для треугольников и квадратов, но и для настоящих «монстров».
Несмотря на это, неевклидова геометрия не такая уж и либеральная. Как и у предшественницы, у нее есть свои ограничения. Суть неевклидовой геометрии заключается в том, чтобы заменить аксиому параллельных прямых новым утверждением, но оставить при этом остальные постулаты неизменными. Раз аксиома параллельных независима, то она в некотором смысле заменяема, что делает возможным новые варианты геометрии.
Первым, кто предложил идею неевклидовой геометрии, был Карл Фридрих Гаусс, хотя он и не рискнул опубликовать свои ранние соображения [2]. В версии Гаусса, которую позже Клейн назвал «гиперболической геометрией», аксиома параллельности заменена утверждением о том, что через точку, не лежащую на данной прямой, можно провести неограниченное число прямых, параллельных данной прямой. Представьте, что вы крепко сжали в руке бумажный веер прямо над длинным узким столом. Если стол — это прямая, а ваша рука — точка, не лежащая на прямой, то складки веера показывают множество прямых, которые не пересекают исходную прямую. Термин «гиперболическая» происходит оттого, что расхождение параллельных прямых напоминает то, как расходятся ветви гиперболы.
Гаусс заметил любопытное свойство треугольников в гиперболической геометрии: сумма их углов была меньше 180°. Это отличает гиперболическую геометрию от евклидовой, где сумма углов треугольника всегда равна 180°. Например, в равнобедренном прямоугольном треугольнике два угла равны 45°, а третий — 90°. Талантливый художник М. К. Эшер вдохновился этим различием для создания любопытных узоров из искаженных не-180-градусных треугольников, существующих в гиперболической реальности.