-->

Введение в электронику

На нашем литературном портале можно бесплатно читать книгу Введение в электронику, Гейтс Эрл Д.-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Введение в электронику
Название: Введение в электронику
Дата добавления: 16 январь 2020
Количество просмотров: 10 601
Читать онлайн

Введение в электронику читать книгу онлайн

Введение в электронику - читать бесплатно онлайн , автор Гейтс Эрл Д.

Книга известного американского специалиста в простой и доступной форме знакомит с основами современной электроники. Основная ее цель — теоретически подготовить будущих специалистов — электриков и электронщиков — к практической работе, поэтому кроме детального изложения принципов работы измерительных и полупроводниковых приборов, интегральных микросхем рассмотрены общие вопросы физики диэлектриков и полупроводников. Обсуждение общих принципов микроэлектроники, описание алгоритмов цифровой обработки информации сопровождается примерами практической реализации устройств цифровой обработки сигналов, описаны принципы действия и устройство компьютера. Книга снабжена большим количеством примеров, задач и упражнений, выполнение которых помогает пониманию и усвоению материала. Предназначена для учащихся старших курсов средних специальных учебных заведений радиотехнического профиля, а также будет полезна самостоятельно изучающим основы электроники.

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 52 53 54 55 56 57 58 59 60 ... 120 ВПЕРЕД
Перейти на страницу:

После того, как р-n переход создан, диод должен быть помещен в корпус для того, чтобы защитить его от влияния окружающей среды и механических повреждений. Корпус должен также обеспечить возможность соединения диода с цепью. Вид корпуса определяется назначением или способом применения диода (рис. 20-8).

Введение в электронику - _26.jpg_7

Рис. 20-8. Наиболее часто встречающиеся корпуса диодов.

Если через диод должен протекать большой ток, корпус должен быть рассчитан таким образом, чтобы уберечь р-n переход от перегрева. На рис. 20-9 показаны корпуса диодов, рассчитанных на ток до 3 ампер или менее. Для идентификации катода с его стороны на корпус нанесена белая или серебристая полоска.

Введение в электронику - _27.jpg_7

Рис. 20 9. Корпус для диода, рассчитанного на ток; менее 3 Ампер.

20-4. Вопросы

1. Опишите три метода производства диодов.

2. Какой метод производства диодов предпочтительней других?

3. Нарисуйте четыре распространенных корпуса диодов.

4. Как идентифицируется катод на корпусе диода, рассчитанного на ток менее 3 ампер?

20-5. ПРОВЕРКА ДИОДОВ

Диод можно проверить путем измерения с помощью омметра отношения прямого и обратного сопротивлений. Это отношение показывает способность диода пропускать ток в одном направлении и не пропускать ток в другом направлении.

Германиевый диод имеет низкое прямое сопротивление, порядка сотни ом. Обратное его сопротивление высокое, больше 100000 ом. Прямое и обратное сопротивления кремниевых диодов выше, чем у германиевых. Проверка диода с помощью омметра должна показать низкое прямое сопротивление и высокое обратное сопротивление.

Предостережение: некоторые омметры используют высоковольтные батареи, которые могут разрушить р-n переход.

Полярность выводов омметра определяется цветом соединительных проводов: белый является положительным, а черный — отрицательным. Если положительный вывод омметра соединен с анодом диода, а отрицательный вывод с катодом, то диод смещен в прямом направлении, в этом случае через диод должен протекать ток, и омметр должен показать низкое сопротивление. Если выводы омметра поменять местами, то диод будет смещен в обратном направлении, через него должен протекать маленький ток, и омметр должен показать высокое сопротивление.

Если сопротивление диода низкое в прямом и в обратном направлениях, то он, вероятно, закорочен. Если диод имеет высокое сопротивление и в прямом, и в обратном направлениях, то в нем, вероятно, разорвана цепь. Точная проверка диода может быть проведена с помощью большинства омметров.

Предостережение: некоторые омметры, используемые для поиска неисправностей, имеют на разомкнутых выводах напряжение меньшее 0,3 вольта. Приборы такого типа не могут быть использованы для измерения прямого сопротивления диода.

Для того, чтобы через диод протекал ток, приложенное к нему напряжение при измерении прямого сопротивления должно быть больше потенциального барьера диода (0,7 вольта для кремния и 0,3 вольта для германия). Омметр может также быть использован для определения катода и анода у диода, не имеющего маркировки.

Когда омметр показывает низкое сопротивление, то его положительный вывод подсоединен к аноду, а отрицательный — к катоду.

20-5. Вопросы

1. Как проверить диод с помощью омметра?

2. Какие меры предосторожности должны быть предприняты при проверке диодов с помощью омметра?

3. Каковы показания омметра, когда диод закорочен?

4. Каковы показания омметра, когда у диода разорвана цепь?

5. Как можно использовать омметр для определения вывода катода у немаркированного диода?

РЕЗЮМЕ

• Диод создается соединением вместе двух полупроводников n- и р-типа.

• Область вблизи перехода называется обедненным слоем. Электроны перемещаются через переход из материала n-типа в материал р-типа, и поэтому концентрация электронов и дырок вблизи перехода уменьшена.

• Размер обедненного слоя ограничен зарядом с каждой стороны перехода.

• Заряды вблизи перехода создают разность потенциалов, которая называется потенциальным барьером.

• Потенциальный барьер составляет 0,3 вольта для германия и 0,7 вольта для кремния.

• Ток может протекать через диод только тогда, когда внешнее напряжение больше потенциального барьера.

• Диод, смещенный в прямом направлении, проводит ток. В этом случае положительный вывод источника тока подсоединяется к материалу р-типа, а отрицательный — к материалу n-типа.

• Через диод, смещенный в обратном направлении, протекает только маленький ток утечки.

• Диод является устройством, проводящим ток только в одном направлении.

• Максимальный прямой ток диода и максимально допустимое обратное напряжение указываются производителем.

• Схематическим обозначением диода является:

Введение в электронику - _28.jpg_7

• Катодом диода является материал n-типа, а анодом — материал р-типа.

• Диоды могут быть изготовлены методом выращивания перехода, методом вплавления перехода и диффузионным методом.

• В настоящее время чаще всего используется диффузионный метод изготовления р-n перехода.

• На корпусах диодов, рассчитанных на ток менее 3 ампер, для идентификации катода с его стороны на корпус нанесена белая или серебристая полоска.

• Диод проверяется с помощью омметра путем сравнения прямого и обратного сопротивлений.

• Когда диод смещен в прямом направлении, его сопротивление низкое.

• Когда диод смещен в обратном направлении, его сопротивление высокое.

Глава 20. САМОПРОВЕРКА

1. Каково основное свойство диода на основе p-n перехода?

2. При каких условиях открывается кремниевый диод?

3. Нарисуйте схемы включения диода при прямом и обратном смещении. (Используйте схематические обозначения).

Глава 21. Стабилитроны

ЦЕЛИ

После изучения этой главы студент должен быть в состоянии:

• Описать назначение и характеристики стабилитрона.

• Нарисовать схематическое обозначение стабилитрона и пометить его выводы.

• Объяснить, как работает стабилитрон в качестве регулятора напряжения.

• Описать процедуру проверки стабилитронов.

Стабилитроны очень похожи на диоды с р-n переходом. Они сконструированы для пропускания, главным образом, обратного тока. Стабилитроны широко применяются для управления напряжением в цепях любого типа.

21-1. ХАРАКТЕРИСТИКИ СТАБИЛИТРОНОВ

Как установлено ранее, высокое напряжение обратного смещения, приложенное к диоду, может создать сильный обратный ток, который перегреет диод и приведет к пробою диода. Обратное напряжение, при котором наступает пробой, называется напряжением пробоя или максимальным обратным напряжением. Специальный диод, который называется стабилитроном, предназначен для работы в режиме обратного смещения. Он рассчитан для работы при напряжениях, превышающих напряжение пробоя. Эта область пробоя называется областью стабилизации.

1 ... 52 53 54 55 56 57 58 59 60 ... 120 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название