Этот «цифровой» физический мир (СИ)
Этот «цифровой» физический мир (СИ) читать книгу онлайн
Трагедия многих талантливых одиночек, которые пытаются переосмыслить или даже подредактировать официальную физическую картину мира, заключается в том, что они основывают свои построения отнюдь не на экспериментальных реалиях. Талантливые одиночки читают учебники – наивно полагая, что в них изложены факты. Отнюдь: в учебниках изложены готовенькие интерпретации фактов, адаптированные под восприятие толпы. Причём, эти интерпретации выглядели бы очень странно в свете подлинной экспериментальной картины, известной науке. Поэтому подлинную экспериментальную картину намеренно искажают – в книге приведено множество свидетельств о том, что ФАКТЫ частью замалчиваются, а частью перевраны. И ради чего? Ради того, чтобы интерпретации выглядели правдоподобно – будучи в согласии с официальными теоретическими доктринами. На словах у учёных мужей получается красиво: ищем, мол, истину, а критерий истины – практика. А на деле у них критерием истины оказываются принятые теоретические доктрины. Ибо, если факты не вписываются в такую доктрину, то перекраивают не теорию, а факты. Ложная теория оказывается подтверждена лживой практикой. Зато самолюбие учёных не страдает. Мы, мол, верной дорогой шли, идём, и идти будем! Это не очередная «теория заговора». Просто каждый учёный понимает, что если он «попрёт против течения», то он будет рисковать репутацией, карьерой, финансированием… Успехи современных технологий не имеют к физическим теориям почти никакого отношения. Раньше мы были хорошо знакомы с ситуацией, когда на глючном и сбойном программном обеспечении иногда удавалось сделать что-то полезное. Выясняется, что достойную конкуренцию продукции крутых парней из Рэдмонда могут составить физические теории. Например, Эйнштейн тормознул физику своими творениями конкретно лет на сто. И атомную бомбу сделали не благодаря теории относительности, а вопреки ей. Но проблема не только лично в Эйнштейне с эпигонами, которые вслед за мэтром принялись наперебой навязывать реальности свои надуманные «аксиомы» и «постулаты», «наваривая» на этом «научную репутацию» и «конкретные бабки». Всё гораздо серьезнее. Добро пожаловать в реальный, то есть, «цифровой» физический мир!
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Этот вопрос у теоретиков до сих пор не проработан. Вот как, оказывается, подчинение электронов квантовой статистике «доказывает» наличие у них спинов! Можно, конечно, прислушиваться к декларациям теоретиков о том, что они способны постигать даже то, чего не могут вообразить. Но, по-нашему, здесь всё гораздо проще, и вполне объясняется одним словом: «Заврались».
4.3. Волновые свойства электрона – ещё одна шутка теоретиков.
Вспомним, что термин «корпускулярно-волновой дуализм» теоретики придумали, чтобы прикрыть им своё бессилие объяснить противоречивые свойства фотонов (3.5). Конечно, такое положение дел вызывало у теоретиков некоторую неудовлетворённость. Поэтому сама постановка вопроса о том, что корпускулярно-волновой дуализм может оказаться универсальным принципом – если у частиц вещества обнаружатся волновые свойства – встретила бурное одобрение.
Идею о том, что частицам вещества присущи волновые свойства, проталкивал Луи де Бройль. «Каждой частице, - твердил он, - можно сопоставить волну. Чтобы найти длину этой волны, следует постоянную Планка разделить на импульс частицы, т.е. на произведение её массы на скорость. Тогда всё сойдётся!» Увы, сходилось не всё. Мало того, что физический смысл волн де Бройля до сих пор не ясен, и, соответственно, их приемлемая физическая модель до сих пор отсутствует. И мало того, что имеет место очевидная сингулярность при скорости частицы, равной нулю – когда длина волны де Бройля должна быть бесконечной. Проблема была ещё и в том, что в разных системах отсчёта скорость частицы различна – а, значит, различна и её длина волны де Бройля. А это прямо противоречило принципу относительности, делая различимыми два случая: частица налетает на неподвижную дифракционную решётку (при этом дифракция есть), или решётка налетает на неподвижную частицу (при этом, из-за бесконечной длины волны у частицы, дифракции нет).
«Но кто там будет задумываться над этой чепухой, - прикидывали теоретики, - если волновые свойства у частиц вещества обнаружатся на опыте?!» Вот почему обнаружение этих свойств было очень, очень востребовано. Первыми частицами, у которых усмотрели волновые свойства, стали электроны. В «Фейнмановских лекциях по физике» описан потрясающий опыт с прохождением электронов сквозь две щели. Мол, если не мешать им пролетать сквозь эти щели, то на сцинтилляционном экране за щелями получаются дифракционные полосы. Перекроешь одну из щелей – полосы пропадают. Попытаешься проследить, через какую щель пролетает электрон – полосы тоже пропадают… На впечатлительных читателей это сильно действует. Они же не знают, что никто и никогда таких опытов не делал. Ведь у электрона дебройлевская длина волны маленькая: щелью для неё является зазор между атомными плоскостями. Прикиньте: как можно, для электронов, сделать экран всего с двумя щелями? Как можно перекрывать только одну из них?
Дэвиссон и Джермер делали совсем другое [Д1] – вполне возможное. Они направляли низковольтный пучок электронов ортогонально на полированный срез монокристалла никеля (с никелем у них особенно здорово получилось), и исследовали угловое распределение электронов, рассеиваемых кристаллом в обратную полусферу – за вычетом центрального створа, затенённого электронной пушкой. Детектор настраивался так, чтобы отсекались электроны с малой энергией и регистрировались только те, которые испытали упругое или почти-упругое рассеяние. Выводы о картинах рассеяния делались на основе величины тока с детектора в зависимости от трёх параметров: энергии падавших электронов и двух углов, определявших направления рассеяния.
И вот, авторы представили резонансные пики рассеяния, которые интерпретировали как результаты брэгговского отражения «электронных волн» от систем параллельных атомных плоскостей, наклонённых к поверхности среза. Эти пики соответствовали брэгговскому режиму как по геометрии расположения параллельных атомных плоскостей в монокристалле, так и по резонансным длинам отражаемых волн, которые с точностью до нескольких процентов совпадали с длинами дебройлевских волн электронов при соответствующих ускоряющих напряжениях в электронной пушке. Казалось бы – вот они, волновые свойства у медленных электронов! Ибо их рассеяние хорошо объясняется в терминах дифракции волн де Бройля – аналогично тому, как объясняется дифракция рентгеновского излучения с теми же длинами волн! Но этот вывод основан на далеко не полной картине того, что наблюдалось в действительности.
Прежде всего, авторы сообщили не о всех пиках рассеяния, которые у них обнаружились. Самым сильным был широкий пик зеркального рассеяния, который имел место всегда – при любых энергиях пучка – и, значит, он не мог быть порождением брэгговской дифракции. Да и под другими углами рассеяния были «лишние» пики рассеяния [Л1,К3,Р1]. Далее, концепция брэгговского отражения (см., например, [С1]) подразумевает объёмное взаимодействие волн с трёхмерной атомной решёткой. Однако, имеются свидетельства о том, что у Дэвиссона и Джермера рассеяние электронов было обусловлено не объёмным их взаимодействием с монокристаллом, а поверхностным. Перечислим самые, на наш взгляд, показательные:
1. При уменьшении скорости падающих электронов должна уменьшаться их глубина проникновения в кристалл, и, соответственно, должен уменьшаться эффективный рассеивающий объём кристалла, т.е. должна уменьшаться резкость дифракционных пучков. «Опыт этого, однако, не показывает… наблюдение дифракции в низких вольтах, как раз наоборот, чрезвычайно облегчается, и при малых энергиях оказывается возможным получение наиболее резких пучков» [К2].
2. Допущение разумного коэффициента поглощения потока электронов при углублении в кристалл «даёт, что количество электронов, рассеянных даже вторым атомным слоем кристалла, должно быть… меньше количества рассеянных первым слоем», как минимум, на порядок. «При этом делается непонятным само возникновение резких максимумов» [К2].
3. «Нанесение на рассеивающий кристалл плёнки другого металла в два атомных слоя всегда вызывает практически полное исчезновение первоначальной картины» [К2] – и появляется новая картина, соответствующая металлу этой плёнки. Этот факт прямо указывает на число поверхностных атомных слоёв, ответственных за рассеяние медленных электронов – что полностью отрицает концепцию рассеяния на объёмной решётке.
Всё это говорит о том, что никаких «волновых свойств» у электронов Дэвиссон и Джермер не обнаружили [Г2]. Их результаты, по-видимому, являются частным случаем явления, хорошо известного специалистам по низковольтной электронографии: «С изменением энергии падающих электронов дифракционные картины появляются и исчезают, сменяя друг друга. С увеличением энергии, например, вначале на общем фоне появляются слабые симметрично расположенные пятна-рефлексы, которые разгораются до максимальной яркости, а затем их яркость ослабевает, и рефлексы исчезают на ярком фоне. При дальнейшем увеличении энергии появляются рефлексы в других позициях и также проходят через максимум яркости при определённой энергии» [З1]. Не менее хорошо известно, что эти сменяющие друг друга дифракционные картины, как правило, не согласуются с предсказаниями волновой теории де Бройля. Некоторые пики, которые должны наблюдаться в согласии с этой теорией, отсутствуют вовсе, а, кроме того, всегда наблюдаются «лишние» пики [Л1,К3,Р1], которым приписывают дробные (!) порядки дифракции. Это означает полный отказ от концепции брэгговского отражения, на которой основана теория дифракции «электронных волн».
Чем же тогда были обусловлены пики рассеяния электронов у Дэвиссона и Джермера? На наш взгляд, они были обусловлены хорошо известным явлением, происходящим при бомбардировке поверхности металла медленными электронами – вторичной электронной эмиссией [Б1]. При таком подходе [Г2], объясняются не только вышеназванные особенности, не укладывающиеся в концепцию брэгговского отражения, но и тот факт, что электронные пики рассеяния, по сравнению с рентгеновскими пиками для тех же длин волн, имеют существенно большую угловую ширину и много большую энергетическую ширину. Но такой подход, конечно, не требует приписывания электронам волновых свойств – в согласии с указаниями различных исследователей [К2,Л1,К3,Р1], повторявших опыт Дэвиссона и Джермера.