Удивительная физика
Удивительная физика читать книгу онлайн
В увлекательной форме изложены оставшиеся за рамками школьных учебников сведения по основным разделам физики, описаны драматические истории великих научных открытий, приведены нестандартные подходы к пониманию физических явлений, нетрадиционные взгляды на научное наследие известных ученых.
Для учителей, старшеклассников, студентов, а также для всех, кто желает открыть для себя незнакомую, полную тайн и парадоксов физику.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Не будем подробно описывать современные подводные лодки с атомными реакторами на борту, которые позволяют практически неограниченно долго находиться под водой, – это военная тайна. Остановимся на батискафах – глубоководных подводных лодках, способных погружаться на любую глубину и двигаться там. Прообразом батискафа была батисфера (рис. 189), которая сама, однако, двигаться не могла.
Хорошо известны знаменитые батискафы швейцарского ученого Пиккара (рис. 190), который начал с глубины 3 км и закончил дном Марианского желоба на глубине 11,5 км, которой он достиг 23 января 1960 г. Глубже пока никто не спускался, это рекорд абсолютный, так как большей глубины в мировом океане нет.
Принцип погружения и всплывания подводных судов прост. Судно выполняется по общей плотности легче воды, что достигается многочисленными пусто2тами, заполненными воздухом. Для погружения некоторые из этих пустот заполняются водой, судно становится «плотнее» воды и опускается вниз. Чтобы всплыть, вода выдавливается наружу, пустота оказывается заполненной сжатым воздухом, который легче воды, и судно поднимается вверх. Вот и весь принцип. Да простят автора специалисты-подводники за непрофессиональные выражения типа «пустот2 ы», видимо, у подводников они называются иначе, но так понятнее для не подводников.
Аналогично всплыванию подводных лодок производится подъем затонувших судов, строго в соответствии с законом Архимеда. К затонувшему судну тросами прицепляют заполненные водой понтоны – полые ящики или цистерны из листового металла (рис. 191). После этого воду из понтонов вытесняют сжатым воздухом, подаваемым по шлангам сверху. На глубине 25 м, например, вода имеет давление 0,35 МПа (0,25 – от воды и 0,1 – от атмосферы). Воздух надо подавать с чуть большим давлением, например 0,4 МПа. Понтоны приобретают плавучесть и поднимают судно или иную тяжесть наверх. И наконец, о тайне рыбьего пузыря. Этому пузырю, который имеется у большинства рыб, иногда приписывают функцию описанных понтонов. Дескать, захочет рыба погрузиться, она силой своих мышц сожмет пузырь, уменьшит объем воздуха, станет плотнее воды и уйдет вниз. И наоборот, силой других мышц она раздует пузырь и всплывет. Такое представление о функции плавательного пузыря рыб было высказано профессором Флорентийской академии Борели в 1685 г. и в течение более 200 лет принималось без возражений. Возможно, многие из вас, читатели, думают о назначении рыбьего пузыря подобным же образом, потому что в ряде современных научно-популярных книг по физике так и написано.
Но на самом деле все иначе. Для понимания функции этого пузыря рассмотрим игрушку, придуманную великим Рене Декартом и названную Картезианским водолазом (Декарт – по латыни «Картезиус»).
Эту игрушку можно легко сделать самому (рис. 192). Большая пробирка или высокая мензурка полностью заливается водой, и туда же помещается пипетка, частично заполненная водой, так, чтобы она имела очень небольшую плавучесть. Естественно, пипетка, которую мы назовем водолазом (в игрушках она выполнялась в виде маленького водолаза), плавает на поверхности. Но стоит нам повысить давление в мензурке, например, резиновой грушей или трубкой и собственными легкими, как водолаз начинает тонуть. Воздух выдавливается из резинового баллончика пипетки, и плавучесть становится отрицательной. Водолаз тонет.
Вот таково примерно назначение рыбьего пузыря у их обладательниц. Пузырь имеет связь с плаванием рыб, так как рыбы, у которых пузырь был при опытах искусственно удален, могли держаться в воде, только усиленно работая плавниками, а при прекращении этой работы опускались на дно. У акул вообще нет пузыря, вот и приходится им постоянно работать плавниками, чтобы не «утонуть» – упасть на дно. Чтобы не «утонуть», акула «плавает» даже во сне.
Какова же истинная функция пузыря? Весьма ограниченная и пассивная: он лишь помогает рыбе оставаться на определенной глубине, а именно на той, где вес вытесняемой рыбой воды равен весу самой рыбы. Сжимать пузырь, изменяя плавучесть, рыба не в состоянии, так как стенки ее плавательного пузыря лишены мышечных волокон, которые могли бы изменять его объем.
Что такое пассивное изменение объема тела действительно имеет место у рыб, подтверждается следующим опытом (рис. 193). Рыбка в усыпленном состоянии (под наркозом) помещается в закрытый сосуд с водой, в котором поддерживается достаточное давление, близкое к тому, какое бывает на глубине в естественном водоеме. На поверхности воды рыбка лежит вверх брюшком. Погруженная немного глубже, она вновь всплывает на поверхность. Помещенная ближе ко дну, она опускается на дно. Но в промежутке между обоими уровнями существует такой слой воды, в котором рыбка остается в равновесии – не тонет и не всплывает. Все это становится понятным, если вспомним сказанное ранее о Картезианском водолазе.
Итак, вопреки распространенному мнению рыба не может по своему желанию раздувать или сжимать пузырь, изменения его объема происходят пассивно, под действием наружного давления. Эти изменения объема для рыбы не только не полезны, а, напротив, приносят ей вред, так как вызывают либо неудержимое падение на дно, либо столь же неудержимый подъем на поверхность. Другими словами, пузырь помогает рыбе в неподвижном положении сохранять равновесие, но равновесие это неустойчивое.
Пузырь нужен рыбе ровно настолько, насколько нам, людям, нужен аппендикс. Вырезали его – и слава Богу! Акула, думаю, нисколько не уступает другим рыбам в жизнеспособности, а ведь у нее, как уже было отмечено, пузыря-то нет!
Как открывали… пустоту
«Пустота – это место без помещенных туда тел», – шутил Аристотель. Люди с давних пор подозревали, что воздух – это не «место без помещенных туда тел», а нечто легкое, эфемерное, но реальное. Однако убедиться в существовании воздушной атмосферы через опыт люди до XVII в. так и не смогли. Вот с чего все началось.
В 1640 г. великий герцог Тосканский задумал устроить фонтан на террасе своего дворца и приказал провести для этого воду из соседнего озера при помощи всасывающего насоса. Но флорентийские мастера, которым поручили это дело, убедились, что поднять воду всасывающим насосом выше, чем на 32 фута (1 фут = 0,3048 м, 32 фута = 9,75 м), невозможно.
Возмущенный герцог обратился к уже престарелому 80-летнему Галилею за разрешением проблемы. Всасывание воды в то время приписывали «страху» природы перед пустотой: чтобы не возникало пустоты, вода и следует вверх за поршнем в насосе (рис. 194). Но почему же природа боится пустоты лишь до высоты 32 фута, а затем уже нет?