Бегство от удивлений
Бегство от удивлений читать книгу онлайн
Книга рассказывает о рождении и развитии механики как науки, искавшей и ищущей ответы на самые простые и глубокие вопросы об устройстве природы.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Ну, а в искривленном мире выражение интервала усложнится — подобно тому, как усложнилась теорема Пифагора на шаре или седле. Каждый член правой части формулы на что-то умножится, появятся члены с произведениями ху, хz и т. д. Что же получится?
Дабы подчеркнуть неравномерную кривизну мира, все отсчеты снабдим значком Δ (дельта) — это будет означать, что измерения ведутся в достаточно малой области мира, где кривизна его остается постоянной. И тогда (поверьте на слово) интервал между двумя близкими событиями в искривленном мире пространства — времени будет выглядеть так:
ΔS2 = g11Δx2 + g22Δy2 + g33Δz2 +g44Δτ2 + 2g12ΔxΔy + 2g13ΔxΔz + 2g14ΔxΔτ + 2g23ΔyΔz + 2g24ΔyΔτ + 2g34ΔzΔτ
Множители g, снабженные парой индексов (от 1 до 4), — коэффициенты кривизны. Их всего десять. От них-то, в конечном итоге, и зависит искривление мира. А сами они зависят от масс и расстояний до окружающих тел.
Написанное выражение носит громкий и почетный титул — фундаментальный метрический тензор. Отметив музыкальную звучность термина, воздержимся от расшифровки его смысла (это чистая математика). По существу, здесь не что иное, как усложнение и обобщение «покроя» школьных «пифагоровых штанов» на случай искривленного четырехмерного мира, диаграммы движения в эйнштейновском моллюске отсчета.
В далекой от звезд и планет пустоте при равномерном движении моллюск обращается в аквариум и никакой кривизны мира нет. Фундаментальный метрический тензор становится интервалом специальной теории относительности. В этом случае (при обратной замене τ2 на —c2t2) g11 = g22 = g33 =1, g44 =-c2, a g12 = g13 = g14 = g23 = g24 = g34 =0
Там же, где нет вокруг полной пустоты, где сравнительно недалеки звезды и планеты, должны иметь место отклонения от этих «нормальных» значений метрических коэффициентов.
Следующий шаг — разгадка математической зависимости между метрическими коэффициентами и массами движущегося вещества.
Шаг труднейший.
Коэффициентов — десять. Значит, нужно написать систему из десяти уравнений, связывающих эти коэффициенты с массой и расстояниями от точки наблюдения до окружающих тел.
Гений и труд Эйнштейна отыскали эту систему — систему мировых уравнений.
Нам с вами не стоит даже пытаться разбирать логику вывода и выписывать уравнения. Удовлетворимся сообщением, что они существуют.
Еще сложнее и тоньше дальнейшая работа — решение системы мировых уравнений. Тут Эйнштейн и его последователи столкнулись с трудностями поистине титаническими. До нашего времени задача полностью не решена. Добыты только отдельные частные решения, годные лишь ограниченно, при всевозможных упрощениях.
Тем не менее результаты огромны: создана математическая теория тяготения, в которой действительно нет, как таковой, силы тяготения! Есть только силы инерции.
Грубо говоря, дело обстоит следующим образом.
Удалось выяснить, как именно отклоняются от «нормы далекой пустоты» метрические коэффициенты мира около тяжелого тела — например, Земли. На этом материале был установлен «околоземной вариант» фундаментального метрического тензора, то есть, другими словами, характеристика кривизны пространства — времени.
Оказалось, что геометрия тут эллиптическая (вроде геометрии поверхности яйца, но только, конечно, четырехмерная, да еще такая, что геодезические линии служат не кратчайшими, как на яйце, а длиннейшими расстояниями. Причем с приближением к центру Земли кривизна мира увеличивается (кривизна поверхности яйца увеличивается с приближением к его «острым углам»). И увеличение кривизны мира означает очень малое замедление времени и сокращение расстояний.
Отсюда попробуем представить себе ход геодезических линий, этих прямейших длиннейших путей, «рельсов» инерционного движения тел на диаграмме искривленного пространства — времени.
Во-первых, все геодезические сходятся, вроде меридианов на глобусе.
Во-вторых, кривизна их тем больше, чем больше кривизна мира.
Не забывайте, что речь идет о мире-диаграмме, построенном по правилам Эйнштейна, что одно из его измерений — время — может только возрастать. Поэтому геодезические линии, обладая наибольшей прямизной и наибольшей длиной, имеют, кроме того, направление — устремлены в сторону возрастания времени. Тела движутся по ним из прошлого в будущее, но не наоборот. Так вода в реке обязательно течет сверху вниз.
Разумеется, вообразить все это вместе и сразу непросто. Попытаемся все же применить сказанное к поведению камня, находящегося около Земли.
Камень выпущен
И вот пробил торжественный час исполнить давнее, много раз повторенное обещание: окончательно объяснить чудо падения камня на Землю.
Включите мысленно духовой оркестр — и, пожалуй, сразу выключите, чтобы не мешал.
Внимание!
У меня в руке камень. Внизу — Земля.
Будем считать, что в пространстве Земля стоит на месте (движением ее вокруг Солнца пренебрежем, как и прочими астрономическими движениями). Но во времени она движется. Она мчится в будущее. И камень мчится в будущее. И я тоже. Этим бесспорным фактом удобно воспользоваться для объяснений.
Земля не испытывает никаких сил (о Солнце пока совсем забудем), то есть находится во власти одной только инерции. Можно сказать: Земля по инерции движется в будущее.
А камень испытывает действие силы — он удерживается моей рукой.
Я разжимаю пальцы — дарю камню свободу, избавляю его от действия силы. И (внимание!) давайте теперь вообще забудем о таком понятии, как сила тяготения. Пусть камень, как и Земля, остался во власти одной лишь инерции.
Что ж, тогда и камень полетит по инерции в будущее.
Будь Земля бесплотна, лишена массы, мир вокруг нее не был бы искривлен и геодезическая линия освобожденного камня была бы совершенно прямой. Не получив толчка, камень благодаря инерции хранил бы покой в пространстве, передвигаясь только во времени, — спокойно висел бы возле моей разжатой руки. Обо мне можно было бы сказать то же самое. Я и камень мчались бы в будущее вместе, по соседним строго прямым и параллельным геодезическим линиям, все время находясь в относительной неподвижности. Никакого падения не случилось бы.
Но в действительности Земля отнюдь не бесплотна. Мир искривлен ее гигантской массой. Поэтому я и камень неравноправны. Я испытываю действие силы — пол давит на мои подошвы, не позволяя мне «провалиться сквозь землю». Другими словами, меня все время «насильно» сдвигают с моей геодезической линии и держат на мировой линии, параллельной геодезической линии центра планеты.
А камень по-прежнему свободен. На него ничто не давит. Он и теперь путешествует в будущее по своей геодезической линии.
Но на этот раз она изогнута, потому что мир искривлен.
Правда, пространство — время деформированы так мало, что и геодезические изогнуты совсем незначительно. В первые мгновения свободы камня его геодезическая линия почти совпадает с моей мировой линией, и камень почти неподвижен относительно моей ладони. Но бег во времени стремителен. За микросекунды «путешествия в будущее» геодезическая линия камня чуть отходит от моей мировой линии. Поэтому камень, мчась вместе со мной во времени, неизбежно набирает скорость и смещается относительно меня в пространстве. С каждым мгновением скорость и пространственное смещение камня больше, потому что его геодезическая линия все круче отклоняется от моей мировой линии.
Саму кривизну мира я не замечаю, как и ее увеличения: замедление секунд и сокращение сантиметров слишком незначительны. Не чувствую я и того, как вместе с камнем и Землей мчусь в будущее: этого «полета» ведь на самом деле нет, он лишь условность, привлеченная для удобства объяснений. Поэтому движение камня по геодезической линии возле Земли предстает передо мной в явлении зримом и привычном: ускоренном движении камня к центру планеты.