Революция в физике
Революция в физике читать книгу онлайн
Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!
Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги. Это одна из немногих книг, где популярно и довольно полно излагается нерелятивистская квантовая теория, ставшая уже классической, но все еще не очень понятная и не очень знакомая тем. Кто непосредственно не занимается этой областью физики.
Это образец лучшего стиля популярной литературы, где автор никогда не впадает в дурной тон снисходительного отношения к читателю, которое выражается в том, что очень примитивно при помощи объяснений «на пальцах» и вульгарных «картинок» предположительно «малоразвитому» читателю пытаются объяснить некие высокие и недоступные материи. Напротив, это серьезная беседа о серьезных и трудных вещах, предполагающая у читателя способность к такому же точно интеллектуальному напряжению, которое приходится делать автору для того, чтобы трудные вопросы изложить по возможности ясно и доступно.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Действительно, если с помощью уравнения Дирака снова проквантовать атом водорода, то оказывается, что благодаря появлению нового свойства – спина – возникают новые, доселе неизвестные квантовые числа. Они в точности совпадают с внутренними квантовыми числами, введенными эмпирически за несколько лет до этого при классификации спектральных термов, наблюдавшихся на опыте.
Полученная таким путем формула для тонкой структуры совпадает с формулой Зоммерфельда, в которой старые азимутальные квантовые числа заменены новыми квантовыми числами. В результате такой последовательной повсеместной замены достигается полное совпадение экспериментально наблюдаемых спектров с теоретическими. Аналогичные результаты получаются и для более тяжелых атомов, если, конечно, можно довести до конца все расчеты, введя некоторые упрощающие предположения. Таким образом, трудности, связанные с рентгеновскими дублетами, устраняются. Итак, важная идея Зоммерфельда о введении в квантовую теорию релятивистских понятий для объяснения тонкой структуры оказалась верной. Однако, чтобы получить вполне удовлетворительные результаты, понадобилось ввести также спин. Первый успех Зоммерфельда не случаен, однако в его теории отсутствовал еще один важный элемент: спин.
Теории Дирака удалось также полностью объяснить магнитные аномалии. При изучении эффекта Зеемана было обнаружено существование аномальных эффектов, которые вызвали большой интерес теоретиков того времени. Причину такого успеха легко понять. Чтобы добиться объяснения аномальных эффектов, нужно было приписать отношению магнитного момента атома к его механическому моменту значение, отличное от так называемого нормального. Это нормальное значение возникает из гипотезы, что магнитный момент атома – результат исключительно орбитального движения его электронов. Приписывая же электрону в соответствии с гипотезой Уленбека и Гоудсмита собственный магнитный момент, отношение которого к его собственному механическому моменту равно удвоенному по сравнению с нормальным значению, теории Дирака удалось выйти из рамок нормального эффекта Зеемана и предсказать аномальные эффекты. И это успех не только качественный, но и количественный. Действительно, расчеты позволяют подтвердить формулу Ланде и предсказать несколько эмпирически величину коэффициента, введенного им для описания аномальных эффектов.
В действительности очень красивая работа Дирака дала, таким образом, замечательные результаты. Она охватила весь комплекс спектроскопических и магнитных явлений, упорно не поддававшихся никаким попыткам объяснения, которые в конце концов с необходимостью привели к представлению о спине. Вызывает восхищение путь, которым было осуществлено объединение квантовой точки зрения с гипотезой Уленбека и Гоудсмита. Можно спросить, сколь далеко идет теория Дирака в применении и слиянии квантовых и релятивистских представлений, ибо первые требуют существенной дискретности, а вторые пронизаны представлением о непрерывности. Это трудный вопрос, который мы не хотели бы здесь обсуждать. Нам кажется, что слияние релятивистских и квантовых представлений осуществлено в теории Дирака не вполне удовлетворительно. Однако в целом здание этой теории восхитительно и представляет собой в настоящее время кульминационный пункт волновой механики электрона.
Не останавливаясь на изучении других приложений теории Дирака, например на проблеме рассеяния излучения веществом (формула Клейна – Нишины), мы хотели бы поговорить об одном странном следствии уравнений Дирака, которое на первый взгляд составляет слабый пункт теории, а на самом деле оказывается ее достижением.
5. Состояния с отрицательной энергией. Положительный электрон
Уравнения теории Дирака проявляют особые свойства, допуская решения, соответствующие состояниям частицы, энергия которой может быть отрицательной. Электрон в одном из этих состояний должен обладать довольно странными свойствами. Чтобы увеличить его скорость, у него нужно отнять энергию. И, наоборот, чтобы его остановить, нужно сообщить ему некоторую энергию. В эксперименте электрон никогда не вел себя так странно. Поэтому вполне законно было считать, что состояния с отрицательной энергией, существование которых допускает теория Дирака, в действительности в природе не реализуются. Можно было бы сказать, что в этом смысле теория дает слишком много, по крайней мере на первый взгляд.
То, что уравнения Дирака допускают возможность существования состояний с отрицательной энергией, это, несомненно, результат их релятивистского характера. Действительно, даже в релятивистской динамике электрона, развитой Эйнштейном в рамках специальной теории относительности, обнаруживается возможность движения с отрицательной энергией. Однако в то время в динамике Эйнштейна трудность была не очень серьезной, ибо она, как и все предыдущие теории, предполагала, что все физические процессы непрерывны. А так как собственная масса электрона конечна, то он всегда обладает конечной внутренней энергией в соответствии с релятивистским принципом эквивалентности массы и энергии. Поскольку эта внутренняя энергия не может исчезать, то мы не можем непрерывным образом перейти от состояния с положительной к состоянию с отрицательной энергией. Таким образом, предположение о непрерывности физических процессов полностью исключает такого рода переход.
Следовательно, достаточно предположить, что в начальный момент времени все электроны находятся в состояниях с положительной энергией, чтобы увидеть, что состояние всегда остается таким же. Трудность становится гораздо более серьезной в механике Дирака, ибо это механика квантовая, допускающая существование дискретных переходов в физических явлениях. Можно легко видеть, что переходы между состояниями с положительной и отрицательной энергией не только возможны, но и должны происходить довольно часто. Клейн привел интересный пример того, как электрон с положительной энергией, попав в область, где действует быстро меняющееся поле, может покинуть эту область в состоянии с отрицательной энергией. Следовательно, то, что экспериментально электрон с отрицательной энергией ни разу не был обнаружен, оказывалось очень опасно для теории Дирака.
Чтобы обойти эту трудность, Дирак выдвинул очень остроумную идею. Заметив, что согласно принципу Паули, о котором мы поговорим в следующей главе, в одном состоянии не может находиться более одного электрона, он предположил, что в нормальном состоянии окружающего мира все состояния с отрицательной энергией заняты электронами. Отсюда следует, что плотность электронов с отрицательной энергией везде одинакова. Дирак выдвинул предположение, что эту однородную плотность наблюдать невозможно. В то же время электронов существует больше, чем необходимо для заполнения всех состояний с отрицательной энергией.
Этот избыток и представляют собой электроны с положительной энергией, их-то мы и можем наблюдать в наших экспериментах. В исключительных случаях электрон с отрицательной энергией может под действием внешней силы перейти в состояние с положительной энергией. При этом мгновенно появляется наблюдаемый электрон и в то же время образуется дырка, пустое место, в распределении электронов с отрицательной энергией. Дирак показал, что такая дырка может наблюдаться экспериментально и должна вести себя подобно частице с массой, равной массе электрона и равным ему, но противоположным по знаку зарядом. Мы будем воспринимать его как антиэлектрон, положительный электрон. Эта неожиданно образовавшаяся дырка не может долго существовать. Она будет заполнена электроном с положительной энергией, который испытает спонтанный переход в пустое состояние с отрицательной энергией, сопровождающийся излучением. Итак, Дирак объяснил не наблюдаемость состояний с отрицательной энергией и в то же время предсказал возможность, пусть редкого и эфемерного существования, положительных электронов.
Несомненно, гипотеза Дирака была очень проста, однако на первый взгляд она казалось несколько искусственной. Возможно, что большое число физиков оставалось бы настроенными в этом отношении несколько скептически, если бы эксперимент немедленно не доказал существования положительных электронов, характерные свойства которых только что предсказал Дирак.