Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт.
Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт. читать книгу онлайн
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Атомная теория Дальтона обеспечила истории атомизма главный элемент: представление о том, что масса — одна из основных характеристик атома. С 1805 года Дальтон прокомментировал свою теорию в Манчестерском литературно-философском обществе, а затем в университетах Глазго и Эдинбурга. В качестве дидактического материала он приводил таблицу, в которой атомы некоторых элементов представлены в виде шариков различной структуры, упорядоченных в зависимости от их массы. Номер (масса), результат измерения на весах, впервые превратился в критерий для упорядочивания химических веществ. Следуя алхимической традиции, Дальтон определил специальный символ для каждого типа атомов; сегодня мы пользуемся буквами (С — углерод, Hg —ртуть и так далее).
Страница книги Дальтона «Новый курс химической философии» (1808), на которой представлены символы, использованные им для обозначения каждого из атомов (вверху). Внизу приведены символы сложных веществ, образованных двумя или более атомами.
[Этот съезд] позволит прийти к согласию в определении важных химических понятий, которые выражаются словами «атом», «молекула», «эквивалентность», «атомный» и «базовый», [...] а также установить единые обозначение и номенклатуру.
Приглашение на Съезд в Карлсруэ
Съезд в Карлсруэ в 1860 году стал первой международной встречей химиков в истории и имел чрезвычайную важность для развития химии как научной дисциплины. Алхимия всегда была особым знанием, передаваемым из уст в уста практически по секрету. Характеристика материальных веществ в зависимости от их свойств делала материю чем-то таинственным и закрытым, и это знание было доступно немногим. С появлением точных весов химические вещества стали классифицироваться по их массе, а не по свойствам. Но чтобы говорить об атомных массах, нужно было иметь базовую единицу, которая стала бы единой для всех лабораторий. Без нее научное общение и сравнение результатов оказались бы невозможными. Именно эта задача была решена в Карлсруэ: ученые высказались за систему измерений, в которой атомная масса углерода равнялась 12, а кислорода — 16.
Определение атомной массы — нелегкий процесс, поскольку атомы не видны и их также нельзя измерить по отдельности. Дальтон считал, что каждое химическое вещество состоит из особенного типа атомов, отличающегося от остальных веществ. Допустим, если назначить массу 1 атому водорода, то на основе измерения массы сложных веществ в составе с водородом можно вывести массу других веществ. Так, например, если вода состоит из водорода и кислорода и весит в восемь раз больше, чем масса чистого водорода, то логично предполагать, что атомная масса кислорода — 8.
Итальянский ученый Амедео Авогадро (1776-1856) предложил другой метод определения атомной массы, основанный на измерении объемов газов, которые вступают в реакцию. С другой стороны, Луи Жозеф Гей-Люссак (1778-1850) заметил, что в реакциях между газообразными веществами пропорции объемов, вступающих в реакцию, всегда простые — 1:1, 2:1 или 3:1. Например, в случае с водой два объема водорода приходятся на каждый объем кислорода. Авогадро предположил, что число молекул каждого объема газа всегда одно и то же, независимо от типа газа. Это единственная гипотеза, совместимая с наблюдениями Гей-Люссака. Однако если это так, то реакция для образования воды — уже не соединение одного атома водорода с одним атомом кислорода, а двух с одним. То есть масса кислорода приближается к 16, это в два раза больше, чем предлагал Дальтон.
Один объем кислорода вступает в реакцию с двумя объемами водорода, и получается два объема воды. Если гипотеза Авогадро об одинаковом числе молекул одинакового объема газов верна, то кое-что не сходится. Один объем кислорода дает два объема воды, то есть каждая молекула кислорода дает две молекулы воды. Это возможно, только если молекулы чистого кислорода состоят из двух атомов кислорода и каждый из них дает одну молекулу воды. Все это абсолютно очевидно сегодня, когда мы привыкли говорить о воде как об Н20, но в начале XIX века это было рискованное предположение.
Гипотезы Авогадро не были широко известны, пока Станислао Канниццаро (1826-1910) вновь не озвучил их на Съезде в Карлсруэ. И вот оказалось возможным составить новую систему атомных масс и одновременно ввести различие между элементом, молекулой и атомом. Это разделение оказалось ключевым в работе Дмитрия Менделеева (1834-1907). В 1867 году Менделеев получил должность профессора химии Санкт-Петербургского университета и читал общую химию студентам первого курса. Однако он столкнулся с отсутствием книг на русском языке, в которых были бы изложены новшества, введенные на Съезде в Карлсруэ, так что Менделеев решил написать собственный трактат. В середине XIX века сделать это было непросто. Было известно 63 химических элемента, и требовалось найти какой-нибудь способ классифицировать их. Менделеев не был удовлетворен обычной классификацией в соответствии с химическими свойствами и сделал ставку на классификацию химических элементов в зависимости от их атомной массы.
В двухтомнике «Основы химии*, написанном Менделеевым в 1868 и 1869 годах, довольно четко прослеживается развитие его мысли в тот период. Вначале классификация элементов в соответствии с массой была дидактическим инструментом. Но работая над вторым томом, Менделеев обратил внимание, что свойства элементов тесно связаны с позицией, которую они занимают в этой классификации. Упорядочивание по возрастанию масс также открывало определенную модель, в которой химические свойства повторялись. Если по горизонтали порядок выражал рост массы, то по вертикали приводились основные химические свойства.
Периодическая таблица в том виде, в каком Менделеев опубликовал ее в 1871 году. Химик включил известные на тот момент элементы и оставил свободные места, которые понадобились для открытых в дальнейшем веществ, поскольку каждая клетка соответствует элементу с определенными свойствами.
Сегодня периодическая таблица элементов есть во всех химических аудиториях, лабораториях, учебниках для средней школы... Это упорядочивание символов по рядам и столбцам дает, даже на первый взгляд, много информации о химических свойствах элементов. Только зная, в каком месте таблицы находится конкретное вещество, мы определяем, является ли оно металлом, благородным газом, щелочным веществом и так далее. Положение элемента в таблице также предоставляет данные о распределении электронов на периферии атомов.
Естественно, в середине XIX века такая классификация была невозможна, поскольку если и допускалось существование атомов, то абсолютно простых, не обладающих структурой. Периодическая таблица — пожалуй, самое полезное, лаконичное и содержательное дидактическое изобретение в истории науки.
Каково было отношение Менделеева к атому? Как и большинство химиков того времени, он принимал сам термин, но не верил в реальность атома как дискретной частицы материи. Говоря об атомах, химик подразумевал, что вещества вступают друг с другом в реакцию в определенных отношениях. Для Менделеева атом кислорода или водорода — минимальное количество этого вещества, причем необязательно его минимальная физическая структура. Есть некая ирония в том, что классификация Менделеева, так повлиявшая на принятие реальности атомов, была разработана в контексте скептического отношения к их существованию.
Реальность атомов была одной из самых обсуждаемых тем в XIX веке. Главный вопрос состоял в том, до какой степени атомная теория является научной. Проблема была довольно серьезной, потому что ни Дальтон, ни Менделеев собственно атом не открыли. Атомная теория имела несомненную ценность ввиду ее успеха в объяснениях и косвенных проверках, но она не была окончательно доказана. Таким образом, во второй половине XIX века в дискуссии вокруг реального существования атомов наступил один из кульминационных моментов. В центре полемики была философская позиция о природе и методе науки, известная как позитивизм.