-->

Этюды о свете

На нашем литературном портале можно бесплатно читать книгу Этюды о свете, Королькевич Фридэн Игнатьевич-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Этюды о свете
Название: Этюды о свете
Дата добавления: 16 январь 2020
Количество просмотров: 313
Читать онлайн

Этюды о свете читать книгу онлайн

Этюды о свете - читать бесплатно онлайн , автор Королькевич Фридэн Игнатьевич

Эта работа показывает существование в природе элементарных носителей величиною постоянной Планка — своего рода атомов энергии излучений. Признание их реальности дает возможность уточнить физическую картину мира и причину корпускулярно-волнового света, дисперсии, спонтанного излучения, фантомности кварков, красного смещения спектра галактик. Энергоатомарная структура излучений и пространства определяет сущность фотонов и механизм образования частиц, позволяет неформально устранить расходимости в квантовой теории поля, создать энергетику излучений Космоса.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 2 3 4 5 6 7 8 9 10 ... 15 ВПЕРЕД
Перейти на страницу:

И вполне естественно предположить, что этот мир существенным образом влияет на все. И что это влияние можно заметить и с пользой применить в теории и на практике.

Так, например, неисчислимые толпы субквантов и все самостоятельные «бродяги» наряду с нейтрино образуют собой и скрытую массу Вселенной, и так называемую энергию нулевых колебаний вакуума. Их трудно объяснить иначе, а присущие им бесконечности сводят на нет достоинства теории квантованных полей. Этот энергетический «бульон», видимо, питает и набирающих, по Вавилову, полный квант энергии спонтанных излучателей фотонов.

ЕЩЕ ОДНА ПОЛЬЗА СВЕТА

Каждое «ведро пространства», согласно Фреду Хойлу, пронизывают миллиарды квантов космических излучений: Только самое слабое из них, реликтовое, содержит около 400 фотонов в кубическом сантиметре. Космос непрерывно и со всех сторон шлет даровую, вечную, чистую и безопасную энергию. Можно ли ее использовать — вот в чем вопрос.

О лучистой энергетике обычно говорят: этого не может быть. Но точно также говорили и об использовании пара, электричества и атома. Сам Резерфорд, открывший атомное ядро, решительно отвергал возможность получения атомной энергии.

Разумеется, у отдельного фотона энергии мало. Но ее мало и у отдельного атома. Однако на каждый атом вещества приходится больше ста миллионов фотонов. А тех, что летят к нам из Космоса ежесекундно, не счесть. При этом фотоны обладают способностью наращивать воздействие на приемные устройства при увеличении их памяти о субквантах. Тогда рассеянные и вроде бы не сильные лучи далеких звезд могут обретать мощь жаркого и обильного солнечного света на экваторе в полдень при безоблачном небе. Природа показывает нам пример рационального использования лучистой энергии в растительном и животном мире. Теоретическое обоснование возможности лучистой энергетики было неоднократно опубликовано с 1992 года у нас и в 1995 году — в США [3].

Норберт Винер говорил, что каждая профессия имеет свои особенности. Когда горит дом, люди бегут от огня, а пожарный бежит в огонь, в горящий дом. Если он бежит от огня, то теряет честь и звание пожарного. А как быть с честью и званием ученого, если он избегает решения проблем? Если он перестал быть исследователем? Ландау как-то справедливо заметил: ученым может быть и кот, но он — не исследователь.

Фотоны при определенном сочетании частоты их излучения и времени памяти приемников проявляют себя подобно частицам вещества, бомбардирующим приемник. А это значит, что субкванты света обладают кинетической энергией. Но она может не только бомбардировать приемник, но и нагревать его, а также трансформироваться в другие виды энергии электрическую, химическую и механическую, связанную с движением приемника. Ведь энергия воздействия фотонов аддитивна, она суммирует энергию субквантов. Каждый из них имеет в соответствии с величиной постоянной Планка 6,6261·10−27 эрг=4,1355·10−15 электронвольт=4,4398·10−24 атомной единицы массы.

Память цинка, например, с учетом его красной границы фотоэффекта имеет величину 1,2·10−14 секунды. При частоте света больше 4,5·1014 герц цинк получает плотную «очередь» субквантов, сравнимую с ударом частицы вещества. Но при меньшей памяти приемника удара фотона такой же частоты уже не будет. И наоборот: при низкой частоте света, но при увеличенном времени памяти приемного устройства можно получать нужный уровень воздействия — удар, нагрев, трансформацию вида энергии.

В этом — вся соль.

Если поучиться у природы и привлечь теорию, то собранные уловителями лучистой энергии кванты далеких звезд и других излучателей могут стать очень и очень полезными.

Использовать лучистую энергию Космоса в конце XIX века призывал еще первый русский физик-теоретик, профессор Московского университета Николай Умов. А постановка задачи, как известно, — первый шаг к ее решению. Но только недавно немецкие исследователи создали материал, который вместо стекла в окне не только пропускает свет, но и обогревает помещение. Изобретатель компьютерной дискеты Иосиро Накамацу объявил в 2001 году об использовании энергии космических излучений. Главный ученый секретарь Российской академии наук Николай Платэ сообщил в конце того же года в газете «Труд» о создании новых материалов, обладающих памятью и эффективно преобразующих виды энергии.

Недавно в Кремле на заседании Всемирного информационного форума было сказано: «Не нужно больше никакого топлива. Найден новый универсальный источник энергии — свет». «Общая газета» иронизировала в своем сообщении по поводу этого заявления, но уподобилась тем самым герою рассказа А. П. Чехова «Письмо к ученому соседу».

Во-первых, лучистая энергетика уже миллионы лет действует в мире растений и животных, впитывающих живительные лучи Солнца, и не только его.

Во-вторых, существует и успешно развивается гелиоэнергетика — как на земных станциях, так и на космических аппаратах, где она является частью штатной технологии жизнеобеспечения экипажа.

В-третьих, в последние десятилетия объединяются теоретические и технологические разработки в области фотоэлектрического и фототермического преобразования лучистой энергии.

Преобразования лучистой энергии различны. В фотоэнергетике растений — это поглощение и консервация энергии фотонов не только в хлоропластах, как это представлялось в рамках классической теории фотосинтеза, но и в биомембранах. В гелиоэнергетике — высокотемпературный нагрев рабочей среды или получение электроэнергии на глубоких внутриатомных и межатомных уровнях полупроводниковых элементов.

Пока что фантастическим, но теоретически возможным способом преобразования энергии является и аннигиляция частиц с полным освобождением заключенной в них энергии субквантов. Если существует в природе фоторождение частиц, то почему бы не существовать и обратному процессу, свойственному явлениям природы?

Косвенно о такой возможности свидетельствует невообразимо сильное излучение галактик Мессье 87 и Лебедь А, где поток энергии исчисляется величинами в 1044 эрг в секунду, что объяснимо пока только теоретически возможным механизмом аннигиляции, не противопоказанной космическим объектам.

Делокализация субквантов частиц при их аннигиляции дает 90 процентов заключенной в них энергии массы покоя. Оставшиеся — у нейтрино.

Субквантовая энергетика отнюдь не стоит перед гамлетовской дилеммой: быть ей или не быть? Она уже есть. Вопрос в другом: как производительно использовать энергию мириадов космических фотонов, щедро дарованных нам природой.

ОСНОВА АТОМИСТИКИ

Двадцать пять веков назад Фалес Милетский задал вопрос: из чего создан наш мир? Похоже, что нынешняя атомистическая теория отвечает на него так: из всего. Из частиц, полей, физического вакуума — из всего. Но это не очень хорошо разъясняет, из чего созданы, например, частицы? А свет?

Атомистика — это учение о прерывистом, «зернистом», по Демокриту, дискретном строении материи. Ее исходным понятием послужила идея атома — неделимого создания природы. Однако по мере экспериментального доказательства различия форм материи — в виде уже делимого атома, молекул, частиц, полей и физического вакуума — атомистика отошла от своего изначального смысла. Постепенно она превратилась в учение обо всех зернистых и незернистых формах и видах материи. Современная атомистика считает материю прерывной и непрерывной, она отрицает существование конечных «кирпичиков» мироздания, действительно неделимых, первичных его элементов.

Но если даже реальность дискретных и непрерывных форм материи доказана опытом, это еще не доказывает невозможность существования исходных элементов ее структур. Отрицание первичных элементов есть использование недоказательства их реальности как доказательства их нереальности.

В «Диалектике природы» Энгельс заметил, что если все различия и изменения качества сводятся к количественным различиям и изменениям, то мы с необходимостью приходим к тезису, что вся материя состоит из тождественных мельчайших частиц. Но до этого мы еще не дошли. До этого еще не дошла и физика высоких энергий, имеющая дело с наиболее глубоко скрытыми деталями строения вещества и в этом смысле логически развивающая гипотезы античных философов.

1 2 3 4 5 6 7 8 9 10 ... 15 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название