-->

Революция в физике

На нашем литературном портале можно бесплатно читать книгу Революция в физике, де Бройль Луи-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Революция в физике
Название: Революция в физике
Дата добавления: 16 январь 2020
Количество просмотров: 293
Читать онлайн

Революция в физике читать книгу онлайн

Революция в физике - читать бесплатно онлайн , автор де Бройль Луи

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!

Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги. Это одна из немногих книг, где популярно и довольно полно излагается нерелятивистская квантовая теория, ставшая уже классической, но все еще не очень понятная и не очень знакомая тем. Кто непосредственно не занимается этой областью физики.

Это образец лучшего стиля популярной литературы, где автор никогда не впадает в дурной тон снисходительного отношения к читателю, которое выражается в том, что очень примитивно при помощи объяснений «на пальцах» и вульгарных «картинок» предположительно «малоразвитому» читателю пытаются объяснить некие высокие и недоступные материи. Напротив, это серьезная беседа о серьезных и трудных вещах, предполагающая у читателя способность к такому же точно интеллектуальному напряжению, которое приходится делать автору для того, чтобы трудные вопросы изложить по возможности ясно и доступно.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 2 3 4 5 6 7 8 9 10 ... 56 ВПЕРЕД
Перейти на страницу:

Однако в рамках классической механики топологические неоднородности пространства, расположенные на конечных расстояниях от траектории материальной точки, разумеется, никоим образом не могут влиять на ее движение. Поместим, например, поперек траектории материальной точки экран с отверстием. Если траектория пересекает экран вблизи центра отверстия, то искажения топологии пространства, вызванные наличием экрана, совершенно не повлияют на ее вид. Напротив, если траектория проходит бесконечно близко от края отверстия, то она будет возмущена, и тогда говорят, что частица задела край экрана. Однако с точки зрения классической механики, совершенно невозможно понять, почему движение материальной точки, проходящей сквозь отверстие в экране, зависит от того, имеются ли в экране дополнительные отверстия, расположенные на конечном расстоянии от первого. Значение этих замечаний для объяснения опытов Юнга с отверстиями в экране с корпускулярной точки зрения скоро станет понятно; можно также почувствовать, что нового должна внести волновая механика в этот вопрос.

Уравнения классической механики материальной точки позволяют ввести две динамические величины, характеризующие движение материальной точки. Первая из них – векторная величина, количество движения, или импульс, который определяется в классической механике как произведение массы материальной точки на ее скорость. Важность этой величины для физики следует из тех же уравнений движения, поскольку их можно сформулировать следующим образом: производная по времени от вектора количества движения равна силе, действующей на материальную точку. Хотя, как легко видеть, в классической механике эта динамическая величина является производной от кинематической величины (скорости) и образуется из нее простым умножением на массу, ясно, что эти две величины имеют совершенно различную природу, ибо импульс характеризует собственно динамические свойства рассматриваемой материальной частицы. Вторая из них – скаляр, энергия. Она играет существенную роль, особенно в тех случаях, когда сила является потенциальной. Из уравнений движения непосредственно следует, что если потенциал для всех точек пространства не зависит от времени, то имеется некоторая величина, сохраняющая постоянное значение при перемещении материальной точки. Эта величина равна сумме половины произведения массы на квадрат скорости и значения потенциала в том месте, где находится материальная точка. Иными словами, эта величина равна сумме кинетической и потенциальной энергий. Таким образом, в потенциальном поле сил (консервативном поле) полная энергия, которую мы только что определили, остается постоянной или, выражаясь математическим языком, является первым интегралом движения. Здесь опять мы видим, что понятие энергии вводится с помощью кинематического понятия скорости и специфически динамических понятий массы и потенциала (последний непосредственно связан с силой). Нет необходимости отмечать, что понятие энергии, кстати, далеко выходящее за рамки классической механики, имеет огромное значение для всей физики.

Так же как остается постоянной энергия, если производная потенциала по времени тождественно равна нулю, так и компонента количества движения сохраняет постоянное значение, если производная потенциала по соответствующей координате тождественно равна нулю. Это указывает на некоторое сходство между энергией и компонентами импульса. Энергия соответствует временной координате, тогда как компоненты импульса – пространственным координатам. Сходство проявляется еще более явно в теории относительности, в которой энергия и три компоненты импульса рассматриваются как компоненты некоторого четырехмерного пространственно-временного вектора – вектора четырехмерного импульса.

В механику материальной точки входят также и несколько других величин, имеющих важное значение. Например, компоненты момента количества движения материальной точки относительно некоторой заданной точки. Они также выводятся из кинематических понятий положения и скорости, к которым добавляется динамическое понятие массы. Эти компоненты, как известно, будут первыми интегралами движения в случае центрального поля сил; важность этого случая в небесной механике общеизвестна.

Итак, в классической теории динамические величины образуются из кинематических величин скорости и координаты и собственно динамических величин массы» и потенциала.

3. Динамика системы материальных точек

В динамике материальной точки поле сил предполагается заданным в каждой точке для каждого момента времени. Но в классической механике силовое поле, действующее на какую-либо материальную точку, само создается другими материальными точками. Таким образом, вполне естественно рассмотреть совокупность взаимодействующих между собой материальных точек и определить характер движения такого ансамбля.

На первый взгляд подобная задача может показаться очень сложной, поскольку каждая материальная точка, входящая в эту систему, перемещается в результате воздействия на нее других материальных точек, что в свою очередь приводит к изменению силы, действующей на данную материальную точку со стороны остальных.

Тем не менее, с математической точки зрения задача формулируется по-прежнему просто: в каждый момент времени произведение массы какой-либо материальной точки на ее ускорение равно действующей на нее силе, которая, разумеется, зависит от положения всех остальных материальных точек системы. Таким образом, для ансамбля, состоящего из N материальных точек, мы получаем систему из 3N дифференциальных уравнений второго порядка по времени для 3N координат всех N материальных точек. Как следует из математического анализа, решение этой системы уравнений полностью определяется заданием положений и скоростей всех материальных точек системы в начальный момент времени. Так обобщается на случай системы материальных точек принцип механического детерминизма, установленный ранее для случая одиночной материальной точки.

Изучение движения системы материальных точек очень упрощается, если ввести понятие центра инерции системы, который, как известно, совпадает с центром тяжести всех материальных точек системы. Оказывается, что если на систему не действуют никакие внешние силы, то ее центр инерции движется прямолинейно и равномерно. Этот результат следует из одного общего свойства сил, вводимых в механике, свойства, которое выражается принципом равенства действия и противодействия. Согласно этому принципу, сила, действующая на материальную точку A со стороны материальной точки B, равна по величине и противоположна по направлению силе, с которой точка A действует на точку B.

В том случае, когда система обладает потенциальной энергией, можно предположить, что потенциальная энергия зависит только от взаимного положения материальных точек – гипотеза с физической точки зрения вполне естественная.

Итак, задача определения движения системы разбивается на две: сначала находится движение центра инерции, а затем – движение системы относительно ее центра тяжести. Ряд хорошо известных теорем облегчает решение этой задачи.

Количество движения системы материальных точек определяется просто как сумма (геометрическая) количеств движения всех входящих в нее материальных точек. Оно выражается в виде суммы произведений масс на соответствующие скорости, т е. также использует понятие скорости. Что касается энергии системы, то она всегда содержит слагаемое, соответствующее кинетической энергии и равное сумме кинетических энергий всех материальных точек, т е. полу сумме произведений массы каждой материальной точки на квадрат ее скорости. Если же система консервативна, то полная энергия включает в себя также потенциальную энергию, которая в свою очередь состоит из двух слагаемых. Первое равно сумме потенциальных энергий всех материальных точек во внешнем поле, действующем на систему (если таковое имеется). Второе слагаемое, отличное от нуля и в том случае, когда внешнее поле отсутствует, есть энергия взаимодействия материальных точек. Оно равно сумме взаимных потенциальных энергий каждой пары частиц.

1 2 3 4 5 6 7 8 9 10 ... 56 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название