Занимательно об астрономии
Занимательно об астрономии читать книгу онлайн
Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.
Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.
Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.
А еще два века назад увлечение звездами могло окончиться для вас… костром.
Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Невиданное светило скоро погасло. И когда астрономы разыскали и прочитали эту запись (а случилось это лишь в 1942 году) и направили в место, указанное китайцами, свои телескопы, они увидели на фотографиях только две слабые звездочки шестнадцатой звездной величины в самом центре знаменитой Крабовидной туманности. Одна из них, по исследованиям Минковского, скорее всего не имеет к туманности никакого отношения. Зато другая! Ее поверхностную температуру оценивают в 500 тысяч градусов. Так что это самая горячая (!) из известных звезд. И вероятно, она-то и есть все, что осталось от китайской сверхновой.
Стоит заметить, что принять клочья белесого тумана за краба можно лишь при большом воображении. Тем не менее этот космический краб довольно проворен. Разлетается он в разные стороны со скоростью не менее 1000 километров в секунду! И при этом имеет радиоголос, по мощности уступающий только двум источникам нашего неба — в созвездиях Кассиопеи и Лебедя.
Загадка взрывов сверхновых долго не давала спать астрономам, чем, безусловно, способствовала прогрессу науки. Наконец, два советских теоретика, В. Л. Гинзбург и И. С. Шкловский, придумали очень правдоподобное объяснение явлению. Правдоподобное по крайней мере для сегодняшнего состояния науки.
В этом объяснении — драматическая суть второго варианта смерти звезды. Колоссальный взрыв сбрасывает газовую оболочку со звезды, производя вокруг страшные разрушения. Струи ионизированного газа, разлетаясь, переплетаются в причудливые узоры светящейся туманности и образуют невероятно сложное магнитное поле. В его лабиринте веками блуждает по запутанным траекториям множество заряженных частиц, порожденных взрывом. Одни ускоряются, приобретают субсветовые скорости, другие тормозятся. И все они излучают радиоволны. Часть этого излучения мы видим, часть принимаем на антенны радиотелескопов. Туманная оболочка, расширяясь, идет на пополнение запасов межзвездного вещества, а покинутое оболочкой ядро умершей звезды — это отходы, шлак. Правда, они еще сыграют довольно любопытную роль, но об этом позже. Пока можно считать, что количество межзвездного вещества во вселенной все время уменьшается, а количество шлака, наоборот, растет.
Дать точное и всестороннее описание процесса эволюции звезд пока никто не в состоянии. При этом виднейшие теоретики признаются, что «если решение вопроса о происхождении звезд сегодня еще достаточно противоречиво и неточно, то проблема жизни звезды, ее судьбы и эволюции представляется еще менее определенной».
4. Веселое загробное существование
Если вы сбросили со счетов остатки сгоревших звезд, то напрасно. По целому ряду наиновейших теоретических соображений посмертное существование звезды — роман не менее интересный, чем ее жизнь.
В 1937 году в XVII томе журнала «Доклады Академии наук СССР» появилась на редкость короткая статья, подписанная известным советским физиком-теоретиком Л. Ландау. Называлась она просто: «Об источниках звездной энергии». Помните самый гвоздевой вопрос, над которым бились физики всего мира?
Статья занимала всего две странички. Порывистый и угловатый, насмешливый и всегда чуточку трагический Ландау терпеть не мог длинных писаний. Не будь у него под руками Евгения Лившица (так уверяют знавшие Ландау лично), он, Лев Давидович, не написал бы, может быть, вообще ни строчки. Гениальные идеи рождались и проходили цикл развития в его мозгу, не нуждаясь в фиксировании. Ландау даже имя свое стремился сократить и с большим удовольствием откликался, когда друзья звали его просто Дау.
В статье, с которой мы начали разговор, ее автор выдвинул любопытную гипотезу о возможности существования вещества в новом сверх-сверхплотном нейтронномсостоянии. Встречаться оно могло… в недрах выгоревших звезд!
С тех пор прошло больше тридцати лет. Астрономы так и не отыскали в небе ни одной нейтронной звезды, но гипотеза Ландау продолжает существовать и даже развиваться. Вместо того чтобы искать новую, теоретики предпочитают придумывать причины, по которым наблюдение нейтронной звезды «крайне затруднительно для современного уровня техники».
Мы уже говорили раньше о плотности белых карликов. Пугали робкого читателя чудовищным весом наперстка, наполненного звездным карликовым веществом, и на этом остановились. Теперь на помощь следует призвать остатки мужества.
Что, если, сбросив газовую оболочку, то есть «приказав долго жить», звездный труп будет продолжать съеживаться? Картина хоть и лишена приятности, зато вполне реальная. Очевидно, при этом будет продолжать подниматься температура, и сердце белого карлика, уплотняясь и уплотняясь, начнет переходить в нейтронное состояние.
Нейтрон, вообще говоря, частица довольно неустойчивая. Среднее время его жизни не превышает 15 минут. Но в недрах звезды условия несколько отличаются от лабораторных. И там из неустойчивых частиц вполне может сформироваться достаточно устойчивое вещество, находящееся в пресловутом пятом — нейтронном — состоянии. Его плотность можно выразить цифрой граммов в кубическом сантиметре с 14 нулями. То есть наш наперсток, которым мы с вами черпаем сенсации из океана науки, наполненный нейтронным веществом, потянет на весах… 100 миллионов тонн! Совершенно несуразное число. Но не забывайте, что из реального мира Земли мы перешли в предположительный мир угасших звезд. Причем и угасших-то условно, по расчетам физиков.
Перед началом второй мировой войны вопросы звездных судеб изучал и американский физик-теоретик — истинный «отец» «Малыша», первой американской бомбы, — Роберт Оппенгеймер. Он выяснил, что если звезда, более тяжелая, чем Солнце, исчерпает запасы водорода и начнет сжиматься, то заканчивается этот этап катастрофой. За считанные мгновения внешние слои ядра звезды проваливаются до самого центра, осуществляя переход вещества в нейтронное состояние. Гравитационное поле такого плотного сгустка материи оказывается настолько сильным, что свет уже не может выбраться из него. И для стороннего наблюдателя такая звезда гаснет.
Этот процесс назвали гравитационным коллапсом, или гравитационной смертью, звезды. Однако, несмотря на резкое уменьшение объема, общая масса и сила тяготения, с которой звезда раньше действовала на окружающие ее небесные тела, остаются без изменения. И это, по мнению академика Я. Б. Зельдовича, едва ли не единственная возможность для будущего обнаружения таких «погасших» звезд. Термин «погасание» — чисто внешний. Мы с вами никогда не увидим только что описанного катастрофического процесса. В момент катастрофы в действие вступают законы Эйнштейна. Невероятное тяготение (иначе — сильное искривление пространства) начинает влиять на ход времени. И нам в сверхтелескопы гравитационный коллапс будет казаться замедленной съемкой процесса спокойного угасания.
Такие «погасшие» звезды и дальше вовсе не будут представлять собой холодные могилы небесных тел. Нет! Они продолжают эволюционировать, продолжают сжиматься. В сверхплотных недрах этих, ставших уже совсем небольшими по размерам, комков звездной материи продолжают бушевать гигантские температуры. Съежившееся и усилившееся во много раз гравитационное поле так искривляет пространство, что уже не только свет, но даже нейтрино не могут больше вырваться за его пределы. Дальнейшее сдавливание вещества нейтронной звезды должно привести к новому переходу в гиперонное состояние, которое дает начало барионной звезде.
И наконец, в условиях плотности, для которой у автора уже не осталось определяющего термина, барионы распадаются на кварки. Гигантская звезда сжимается едва ли не в точку.
Но если мы прошли мимо гиперонов и барионов, предоставляя читателю самому разбираться в их природе, то о кварках стоит сказать несколько слов.
Прежде всего — это гипотетические фундаментальные частицы с дробным электрическим зарядом. Из них, по мнению ученых, могут быть построены вое основные элементарные частицы, так расплодившиеся в настоящее время. Гипотеза кварков чрезвычайно заманчива, но, увы, до сих пор ни одной из подобных частиц физики не выловили ни в космических лучах, ни на гигантских ускорителях. Они появляются упрямо «только на обрывках старых конвертов» да еще… в снах. Впрочем, как им и положено по природе. Недаром один из авторов этой гипотезы — американский физик Гелл-Ман (вторым автором был молодой швейцарец Цвейг) — назвал их кварками. Вы спросите, что это значит? Ничего! Это название чего-то неизвестного и неуловимого, что встречалось в галлюцинациях героя романа Дж. Джойса «Пробуждение Финнегена». Романы Джойса похожи на бред, и у нас их не печатают. Ученые же уверяют, что они здорово помогают развивать воображение, необходимое современным физикам. А больше их, как правило, никто и не читает.