Охотники за частицами
Охотники за частицами читать книгу онлайн
В последние годы вышла на передний рубеж науки и начала бурно развиваться физика элементарных частиц. Она ставит перед собой самую дерзновенную цель — познать наиболее сокровенные тайны природы, познать законы, управляющие миром, который не увидишь ни в какие микроскопы.
Одни из этих законов уже познаны. Другие — наиболее таинственные, а потому и самые важные — ждут своего открытия. Эти открытия неразрывно связаны с поиском новых частиц. В последние годы «охота» за частицами приняла неведомый до сих пор размах. Гигантские ускорители частиц до энергий в десятки миллионов электрон-вольт, хитроумные ловушки для частиц — таков арсенал оружия современных «охотников».
В этой книге читатели познакомятся с историей открытия всех элементарных частиц, начиная с открытия электрона в 1896 году и кончая открытием омега-гиперона в 1964 году. Большое внимание уделено описанию современных теоретических представлений о мире сверхмалых частиц.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
А пока что вернемся к антипротону. Он пришел к физикам не один. Он привел за собой еще одну античастицу. Она была открыта год спустя, и физики поняли, что это антинейтрон.
Поняли сразу, потому что предвидели коварство антипротона. Из «жаркой» встречи зеркальных братьев могли родиться не только «дребезги» пи-мезонов. Братья могли и не повредить друг друга. Если можно так выразиться, они при этом лишь сняли свои шляпы — электрические заряды.
Заряд протона погасил заряд антипротона, и на свет появились две нейтральные частицы с почти теми же массами, что у исходных частиц. Нейтрон и антинейтрон!
А эта пара аннигилирует уже привычным образом: от их «тел» остаются лишь «дребезги» пи-мезонов. Образование такой пары — событие совсем уж редкое. Давно уже Сегре и его сотрудники улучшили производительность своей машины до десятка антипротонов в минуту, а антинейтроны все еще появлялись буквально поштучно.
На этом, пожалуй, пора закончить разговор о том, как сбылось предсказание почти двадцатипятилетней давности. Теперь речь пойдет еще об одном удивительном пророчестве. О частице, которую физики с полным основанием могли — и еще сегодня могут — считать рекордом неуловимости. О нейтрино.
Альфа-излучение радиоактивных ядер с самого начала нашего века благодаря Резерфорду заняло прочное и важное место в арсенале физиков. Бета-излучением до поры до времени мало кто интересовался.
Просто еще один источник электронов! Причем никудышно слабенький даже в сравнении с тусклой электрической лампочкой, из нагретого волоска которой ежесекундно вырываются полчища электронов.
Очередь бета-распада наступила в начале тридцатых годов, когда к нему обратилась квантовая механика. За два года до того она разгрызла орешек альфа-распада ядер. Казалось, что и тайна бета-распада не устоит перед ее натиском.
Однако с самого начала квантовой механике пришлось столкнуться с двумя весьма неприятными для нее обстоятельствами. Вы помните — она лишила электроны пристанища в ядре? Между тем электроны нахально вылетали из ядер! Мало того, они вылетали из ядер с какой угодно энергией!
Вот этого квантовая механика уже никак не могла им простить! Электроны подкапывались под самые ее основы. Ядро, как показывал альфа-распад, — самый настоящий квантовый объект. Частицы в нем имеют ряд дозволенных энергий, наподобие атома. Об этом же свидетельствовали и ядерные гамма-лучи. Они состояли, подобно спектру атома, из ряда узеньких линий.
Спектр ядерных электронов не обнаруживал же и намека на линии! Выходило, что, с одной стороны, ядро — квантовая система частиц, а с другой — вовсе не квантовая. Этого физики не могли стерпеть.
Привыкшие к двуликости мира сверхмалых частиц, они, однако, не признавали такой его двуликости в одном — в энергии. Частица в данных условиях может иметь либо любую энергию, либо только ряд разрешенных ей энергий. Если она совершенно свободна, то ее энергия может быть любой. Если она связана в коллективе частиц, то ее энергия может иметь лишь набор разрешенных значений. Что-нибудь одно! Неважно, атом ли это, ядро или что-то другое: этот закон действителен для всех частиц.
Все это до сих пор говорило о том, что частицы в ядре могут иметь не любую энергию. А вот любая энергия электрона, появляющаяся из ядер, говорила об обратном. Что же, уступить электрону? Даже и не думайте!
У одних физиков это упорство доходило до безрассудства. Спор с электроном затягивался, и горячие головы пустили в ход незаконные аргументы.
Они покусились не много, не мало, как на сам закон сохранения энергии — на краеугольный камень всей физики. Мол, в виртуальных процессах этот закон вроде как бы не выполняется, а здесь, в бета-распаде, уже нарушается не виртуально, а наяву! Правда, эти физики затем быстро одумались.
Спор затянулся — надо его кончать. В 1933 году Энрико Ферми и независимо от него Вольфганг Паули сообщают о том, что победа в споре на их стороне.
Однако им верят далеко не все. Помните, статью Ферми о бета-распаде даже вернули автору? Снова — даже самые выдающиеся теории не сразу завоевывают мир физиков.
Теория Паули и Ферми одним махом разрешила оба неприятных вопроса бета-распада. Электроны летят из ядер, хотя им запрещено там находиться? Так их там и нет: они появляются лишь в тот миг, когда один из ядерных нейтронов превращается в протон, выбрасывая «из себя»… электрон! Оттого-то электроны и вылетают из ядра, что не могут жить в нем. Так что в этом запрете на прописку права квантовая механика.
Электроны имеют любую энергию, хотя это им запрещено? Это означает лишь, что вместе с электроном из ядра вылетает, видимо, еще какая-то частица. По сумме энергий электрон и эта частица имеют уже не любое значение, а то, которое дозволяет квантовая механика.
Но распределить между собой унесенную из ядра энергию сообщники могут как им угодно. Это уже вне компетенции строгой квантовой теории. От этого «как угодно» и получается, что электроны имеют любую энергию.
Однако электрон виден всем, а его сообщник что-то незаметен. И этому Ферми и Паули дают объяснение. Во-первых, сообщник не имеет электрического заряда. Во-вторых, он имеет массу, ничтожную в сравнении даже с массой электрона.
Какая-то в миллионы раз более легкая копия нейтрона! И Ферми называет ее ласкательно: «маленький нейтрончик». По-итальянски это звучит: «нейтрино».
Новая частица родилась, но пока что на кончике пера теоретиков.
Как ее искать? Нейтрино не заряжено электрически — значит, ни в счетчиках, ни в камерах, ни в фотопластинках следов не оставляет. Нейтрон также «бесследен», но он хоть оставляет весьма зримые следы, вроде поврежденных ядер и даже, чего хуже, разрушенных до основания городов.
Нейтрино же — форменным образом дух бесплотный! Впрочем, первые косвенные «следы» его появления физики наблюдают уже в довоенные годы. Это изломы следов мю-мезонов. Мы уже говорили об этом не раз. И не раз у читателя мог встать вопрос: а почему, собственно, при распадах мю-мезонов след ломается? Разве не может мю-мезон отдать своему наследнику электрону всю энергию?
Оказывается, не может. Ведь, кроме энергии, у мезона еще есть импульс. Закон сохранения импульса — такой же суровый, как и закон сохранения энергии. А нагрузиться импульсом от в двести раз более тяжелой частицы — это электрону не под силу. Он тут же сбрасывает часть ноши, а ее услужливо подхватывают его сообщники — нейтрино. И здесь происходит дележ добычи!
И, как водится в таких случаях, сообщники разбегаются в разные стороны. Оттого электрон и бежит в сторону от пути своего родителя, оттого и ломается след. Такую же картину спустя несколько лет физики смогли наблюдать при распаде пи-мезонов на мю-мезоны. Здесь тоже присутствовал незримый сообщник в дележе энергии и импульса пи-мезона.
Теперь физики почти безоговорочно уверовали в существование нейтрино. Они, однако, убедились и в другом. Выполненные в те годы расчеты показали, что даже сам дух бесплотный должен выглядеть грубейшим зверем по сравнению с нейтрино!
Нейтрино — это почти непостижимое чудо деликатности. Он может пробежать всю видимую в телескопы Вселенную и не коснуться ни одной частицы! Что там — сквозь Землю! — нейтрино может не задеть ни одной частицы даже в чудовищно плотных недрах звезд.
Вот это да! Стоит ли даже и думать о поимке сверхнеуловимого нейтрино? Можно только поражаться смелости тех людей, которые не спасовали перед этой магией природы, а, поразмыслив, заключили: стоит.
И не только думать о поимке, но и ловить нейтрино! Это были американские физики Клайд Коуэн и Фредерик Рейнс.
Схема опыта Коуэна и Рейнса по «поимке» нейтрино. Нейтрино (пунктирная линия) встречает протон в точке 1 и превращает его в нейтрон и позитрон. Последний в точке 2 аннигилирует с электроном, испуская два гамма-кванта. Эти кванты регистрируются верхним и нижним счетчиками сцинтилляций. Нейтрон блуждает в растворе несколько миллионных долей секунды (зигзагообразная линия), а затем захватывается ядром кадмия в точке 3. При этом рождаются три гамма-кванта, которые регистрируются сцинтилляционными счетчиками. Если такая цепочка событий следует с интервалом в миллионные доли секунды, значит, она вызвана нейтрино. На стр. 203 — общий вид установки Коуэна и Рейнса. Видны некоторые из 90 фотоумножителей, встроенных в стенку белого бака.