Охота за кварками
Охота за кварками читать книгу онлайн
Вот уже 20 лет кварки интригуют физиков. Эти выдуманные частицы многое объяснили и могли бы стать первоэлементами, из которых построен мир если бы их удалось обнаружить! О головоломных путях познания которыми идут ученые о фантастичности картины мира открывающейся их глазам, о новейших научных достижениях физики рассказывает доктор наук Ю. Чирков. Издание рассчитано на самые широкие круги читателей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Во-вторых, совершенно неясно, можно ли говорить о каком-то подобии нашего мира, нашей Вселенной и того «космоса», который, возможно, спрятан в микромире.
Еще Д. Менделеев предостерегал от упрощенчества взглядов. «Есть своя захватывающая прелесть, — писал великий химик, — что малейшее в природе так же построено, как величайшее, но отсюда далеко до уверенности в том, что это так и есть на самом деле».
В-третьих, для общей теории относительности, если она уже вторглась в микромир, нужны квантовомеханические обобщения, но они только начинают разрабатываться современной наукой.
Квантовая теория гравитации, которая могла бы точно описать сильные гравитационные поля в микроскопических областях пространства, еще не создана. Физики могут лишь очень приближенно «сшивать» решения уравнений Эйнштейна с квантовой теорией. И поневоле многое в расчетах, начало которым положил М. Марков, остается еще неясным. И эти расчеты еще далеко не доведены до конца. (Кстати, кроме М. Маркова, подобными вопросами занимались и другие исследователи: известный теоретик С. Хокинг из Англии, советский профессор К. Станюкович — он предпочитает слову «фридмоны» слово «планкеоны», это название дано им в честь М. Планка, тем самым подчеркивается квантовая природа этих объектов, — занимаются подобными проблемами и другие исследователи.)
Квантовая гравитация обещает много чудес. Оценки (пока, увы, довольно грубые) показывают, что «горловина» фридмона — ее радиус чрезвычайно мал имеет размеры всего 10-33 сантиметра.
Предсказывает теория и очень сложную структуру материи, окружающей фридмон. Вокруг «голого» фридмона нарастают слои («шуба») из виртуальных спонтанно рождающихся и быстро исчезающих — частиц. Эти фантомы должны, в свою очередь, иметь слоистую структуру.
На дальней периферии (ближе к людям!) — это полупрозрачные, рыхлые мезонные «облака». А в областях, расположенных ближе к фридмону, находится более плотный «керн», слои из более тяжелых виртуальных частиц. И внутри всего этого «многоэтажия» прослоек (мы очень грубо, приближенно охарактеризовали его) глубоко и надежно запрятан фридмон. И он, быть может, и является как бы затравочным ядром для образования являющихся нам в опыте элементарных частиц. Но в этом ядре-фридмоне открывается… Вселенная!
Много еще научных вопросов предстоит решить.
Но как бы там ни было, концепция фридмонов очень обогатила современную науку.
А какой переворот в мировоззренческих, философских взглядах несет учение о фридмонах! Вспомним о матрешках. Размышляя о бесконечности материального мира, о структуре этой бесконечности, мы скорее всего слишком прямолинейны.
Бесконечную череду размеров (матрешка в матрешке) мы представляем себе чем-то вроде прямой, уходящей в область исчезающе малых (микромир) размеров, с одной стороны, и в область неограниченно больших масштабов, (мегамир, сами мы обретаем в макромире) — с другой.
Но, быть может, стремясь в космические дали, мы на самом деле лишь спускаемся в глубины микромира?
По Маркову, оказывается, бесконечность мира скорее похожа на круг, где сколь угодно малые величины «замыкаются» на бескрайне большие и соотношение ультрабольшого и микроскопически малого приобретает относительный смысл. Понятия переходят в свои противоположности. И бесконечное! ь мира похожа не на прямую с уходящими вверх и вниз стрелами, а на круг, где сколь угодно малые величины «замыкаются» на бесконечно большие.
…Холодное звездное небо над головой. Головокружительные дали, пытливо вглядываясь в которые человек узнает все новые научные откровения…
И главный, пожалуй, урок, преподанный фридмонами:
действительность может порой оказаться фантастичнее наших самых архибезумных фантазий.
10
Пирамиды XX века
Вместо того чтобы враждовать между собой из-за благосклонности публики, ученым больше подобало бы думать о себе как о членах экспедиции, посланной для обследования незнакомого, но цивилизованного общества, чьи законы и обычаи лишь смутно понятны.
Как бы ни интересно и полезно было утвердиться в богатых приморских городах биохимии и физики твердого тела, было бы трагедией прекратить поддержку партий, уже пробивающихся вверх по реке, через пороги физики микромира и космологии к таинственной континентальной столице, где издаются законы страны.
Египетские фараоны жаждали величия даже после своей смерти. Ни средств, ни людей не жалели — возводили гигантские монументы. Крупнейший из них пирамида Хеопса в Гизе — имеет высоту около 150 метров. Но какими жалкими кажутся эти колоссы в сравнении с пирамидами XX века — ускорителями, воздвигнутыми во славу науки и человека.
Когда человечество глазами историков оглянется на бурный и неспокойный XX век и захочет в музеях будущего отвести этому столетию особый отдел, то, видимо, стремясь подчеркнуть грандиозность научных и технологических свершений тех далеких времен, оно поставит там наиболее внушительные по размерам экспонаты, — скажем, макеты космической ракеты, домны, атомной электростанции. Но среди всех этих символов нашего времени, возвышаясь над прочими, будет резко выделяться, бросаясь в глаза, модель самого грандиозного из построенных людьми ускорителя элементарных частиц. Эта модель будет для потомков, без сомнения, столь же значительной и памятной, как собор Парижской богоматери для тех, кто изучает эпоху средневековья.
Микроскопы микромира
Один остроумный журналист, желая показать взаимозаменяемость энергии и материи (точнее, массы, вспомним про формулу Эйнштейна), предложил энергию рассматривать как музыку, а элементарные частицы — как танцоров.
Что происходит в ускорителе?
Если совсем кратко, то тут танцоры способны превращаться в музыку, а музыка — в танцоров!
Рассказывать об ускорителях — значит повествовать о вещах очень необычных. Представим себе такую ситуацию. Кто-то захотел узнать устройство часов. Для этого он берет два будильника и с силой ударяет их друг о друга. Странный подход? Да. Но примерно по тому же принципу действуют и ускорители. (Добавим еще, что вместо россыпи шестеренок тут можно получить вдруг… дедушкины настенные часы!)
А еще — довольно распространенный прием — ускорители принято сравнивать с микроскопом. Это сопоставление обычно проводят примерно по такой схеме.
Говорят, что ускоритель — это исполинских размеров «микроскоп» (кавычки добавляют поневоле: внешне ускоритель мало похож на своего собрата по семье научных приборов). Пучку частиц в ускорителе, продолжают, соответствует световой поток в микроскопе; сложной электронной регистрирующей аппаратуре (детекторы, счетчики, логические и вычислительные устройства) — человеческий глаз, связанный с мозгом; системам формирования и управления пучком разгоняемых в ускорителе частиц (магнитные линзы, коллиматоры, системы коррекции) — оптическая система линз в микроскопе.
Обычные резоны физика, утверждающего близкое родство между ускорителем и микроскопом, таковы. Допустим, мы хотим рассмотреть какой-нибудь предмет, очень мелкий. Освещаем его. Если длина световой волны превышает размеры предмета, он остается невидим. Чтобы его разглядеть, необходимы достаточно короткие волны. Так и с элементарными частицами. Известно, что они не только корпускулы, но и волны. И длина этой волны будет тем меньше, чем больше энергия частицы. Вот и получается: чтобы «прощупать», скажем, сердцевину протона другим протоном, снаряд надо разогнать в электрических и магнитных полях до скоростей, приближающихся к световым.
Но в подобных рассуждениях не следует забывать, что элементарная частица не только волна, а своеобразный гибрид, сочетающий корпускулярные и волновые свойства. Поэтому как далеко может простираться аналогия между разглядыванием предмета в лучах света и зондированием элементарных частиц на ускорителях, сказать трудно.