Этот «цифровой» физический мир (СИ)
Этот «цифровой» физический мир (СИ) читать книгу онлайн
Трагедия многих талантливых одиночек, которые пытаются переосмыслить или даже подредактировать официальную физическую картину мира, заключается в том, что они основывают свои построения отнюдь не на экспериментальных реалиях. Талантливые одиночки читают учебники – наивно полагая, что в них изложены факты. Отнюдь: в учебниках изложены готовенькие интерпретации фактов, адаптированные под восприятие толпы. Причём, эти интерпретации выглядели бы очень странно в свете подлинной экспериментальной картины, известной науке. Поэтому подлинную экспериментальную картину намеренно искажают – в книге приведено множество свидетельств о том, что ФАКТЫ частью замалчиваются, а частью перевраны. И ради чего? Ради того, чтобы интерпретации выглядели правдоподобно – будучи в согласии с официальными теоретическими доктринами. На словах у учёных мужей получается красиво: ищем, мол, истину, а критерий истины – практика. А на деле у них критерием истины оказываются принятые теоретические доктрины. Ибо, если факты не вписываются в такую доктрину, то перекраивают не теорию, а факты. Ложная теория оказывается подтверждена лживой практикой. Зато самолюбие учёных не страдает. Мы, мол, верной дорогой шли, идём, и идти будем! Это не очередная «теория заговора». Просто каждый учёный понимает, что если он «попрёт против течения», то он будет рисковать репутацией, карьерой, финансированием… Успехи современных технологий не имеют к физическим теориям почти никакого отношения. Раньше мы были хорошо знакомы с ситуацией, когда на глючном и сбойном программном обеспечении иногда удавалось сделать что-то полезное. Выясняется, что достойную конкуренцию продукции крутых парней из Рэдмонда могут составить физические теории. Например, Эйнштейн тормознул физику своими творениями конкретно лет на сто. И атомную бомбу сделали не благодаря теории относительности, а вопреки ей. Но проблема не только лично в Эйнштейне с эпигонами, которые вслед за мэтром принялись наперебой навязывать реальности свои надуманные «аксиомы» и «постулаты», «наваривая» на этом «научную репутацию» и «конкретные бабки». Всё гораздо серьезнее. Добро пожаловать в реальный, то есть, «цифровой» физический мир!
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Казалось бы, всё логично? Отнюдь. Наш анализ показал, что в тех самых опытах по «допплеровской компенсации» эффекта отдачи имела место селекция опытных данных: та их часть, которая не согласовывалась с концепцией отдачи от гамма-кванта – несомненно, замалчивалась [Г6]. В лучшем согласии с опытными данными оказывается наша модель [Г6] – согласно которой, резонансному ядерному поглощению в обычных условиях препятствует не «эффект отдачи», а допплеровские смещения, обусловленные тепловыми колебаниями ядер в твёрдых телах. При достаточно низких температурах, когда размах тепловых колебаний ядер становится меньше длины волны гамма-излучения, допплеровские смещения становятся нулевыми из-за эффекта Лэмба-Дика – и имеет место мёссбауэровский режим. Из нашего подхода следует, что, у конкретного кристалла, переход в мёссбауэровский режим для различных длин волн гамма-излучения происходит при различных температурах – а не при одной и той же, дебаевской, как это следует из традиционного подхода. Именно наш подход лучше согласуется с опытом: чего стоит один лишь факт мёссбауэровского поглощения для перехода 14.4 кэВ у железа при температурах вплоть до 1046оК [Н1], хотя дебаевская температура у железа равна 467оК [Ф1]. Кроме того, из нашего подхода следует, что мёссбауэровские ширины определяются не естественными ширинами ядерных линий, а параметрами кристаллической решётки, которая в мёссбауэровском режиме является высокодобротным интерференционным фильтром. Следствием этого вывода является предсказание об анизотропии эффекта Мёссбауэра для монокристаллических образцов – что действительно имеет место [А2,Г7,К3,А3]. Любое объяснение этой анизотропии с позиций традиционного подхода является противоречивым, поскольку здесь для кристаллической решётки подразумевается абсолютная жёсткость, при которой отдача от гамма-кванта воспринимается «всем кристаллом» одинаково во всех направлениях. По совокупности, традиционный подход, в котором гамма-кванты переносят импульс, вновь оказывается неадекватен экспериментальным реалиям.
С началом эры освоения космоса появились, как полагают, свидетельства о том, что давление солнечного света влияет на движение космических аппаратов. Так, в 1960 г. на околоземную орбиту был выведен американский спутник «Эхо-1». В развёрнутом состоянии он представлял собой сферический баллон из майларовой плёнки, металлизированной снаружи. При диаметре баллона 30 м и массе всего 68 кг, спутник имел «большую «парусность» по отношению к давлению солнечного света» [Л4]. За пять месяцев орбита спутника из почти круговой (высота перигея 1520 км, высота апогея 1687 км [К4]) превратилась в эллиптическую (высота перигея 900 км, высота апогея 2200 км [Л4]), за следующие полгода вновь возвратилась к почти круговой, после чего опять стала вытягиваться, и так далее. Торможение о разреженную атмосферу, особенно на перигейных участках, приводило к постепенному опусканию орбиты, и в итоге «Эхо-1» просуществовал на орбите менее восьми лет. Всё выглядело очень похоже на то, что эволюции орбиты «Эхо-1» вызывались действием давления солнечного света [Ш2,М1].
Но мы усмотрели другую причину этих эволюций орбиты – чисто электромагнитную. Ультрафиолетовое излучение Солнца должно было вырывать фотоэлектроны из металлизированной поверхности спутника, заряжая его положительно. Компенсирующий приток электронов из окружающего пространства происходил бы не изотропно: из-за магнитного действия фотоэлектронов, летевших, в основном, в сторону Солнца, притекавшие электроны формировали бы область избыточной концентрации отрицательного заряда с противосолнечной стороны от баллона. Этот избыточный отрицательный заряд притягивал бы положительно заряженный баллон – вот и источник силы, тянувшей его в направлении «от Солнца», когда спутник не находился в тени. Оценки [Г8] показывают: этот механизм вполне реалистичен, поэтому эволюции орбиты спутника «Эхо-1» нельзя считать доказательством того, что их причиной было давление солнечного света.
Далее, после создания узкополосных перестраиваемых лазеров, бурно развивается спектроскопия атомов и ионов, охлаждённых и удерживаемых лазерным излучением (см., например, обзор [Д1]). Лазерное охлаждение атомов и ионов, а также их удержание в оптических ловушках, считаются несомненными свидетельствами передачи этим атомам и ионам импульсов фотонов, которых они резонансно поглощают. Но, на наш взгляд [Г4], здесь происходят совсем иные процессы.
Так, в радиочастотной ловушке ионы совершают колебания в области устойчивого движения. Для лазерного охлаждения облачка ионов, его подсвечивают лазерным лучом, частота которого ниже частоты «охлаждающего» оптического перехода у ионов – с таким расчётом, что ионы, движущиеся навстречу лазерным фотонам, воспринимают их допплеровски увеличенную частоту как резонансную, и эффективно их поглощают. Переизлучение же поглощённых фотонов, как полагают, происходит спонтанно, в произвольном направлении. По этой логике, при поглощении фотонов у иона накапливается тормозящий импульс, а при их переизлучении усреднённый импульс отдачи стремится к нулю – так что колебательные движения иона гасятся, вплоть до эквивалентных температур в сотни и даже десятки микроКельвинов.
Мы же полагаем, что гашение колебаний здесь происходит иначе. Бесспорно, что при поглощении ионом порции световой энергии hf, масса иона увеличивается на величину hf/c2, а при излучении такой же порции энергии, масса иона уменьшается до прежнего значения. Эти повторяющиеся увеличения-уменьшения массы колеблющегося иона могут привести – без какой бы то ни было передачи импульса – либо к параметрическому гашению колебаний иона, либо, наоборот, к их параметрической раскачке. Поскольку нет гарантий, что циклы увеличения-уменьшения массы иона синхронизированы с циклами его колебаний, то ясно, что параметрическое гашение колебаний будет происходить с меньшей вероятностью, чем их параметрическая раскачка. И, действительно, лишь ничтожный процент ионов из облачка испытывает «лазерное охлаждение» - а остальные, наоборот, покидают зону устойчивого движения. Заметим, что параметрическое гашение колебаний у части ионов должно происходить с неменьшим успехом в случае, когда частота лазера выше частоты оптического перехода, т.е. когда резонансно поглощают ионы, движущиеся попутно с фотонами – хотя, согласно традиционной логике, в такой ситуации должен иметь место «лазерный разогрев» ионов.
Ещё один важный экспериментальный результат – это удержание атомов лазерными лучами. Так, в стандарте частоты, называемом «цезиевый фонтан» (см., например, [Д2]), облачко атомов цезия удерживается в «холодном», т.е., практически, в неподвижном состоянии благодаря подсветке, с шести сторон, лазерными лучами, частота которых на ~5 МГц ниже невозмущённой частоты оптического перехода (λ=852 нм) в цезии. Считается, что при движении атома, уводящем его из области перекрестья лучей, он резонансно поглощает фотоны встречного луча и, таким образом, тормозится из-за эффекта отдачи.
Мы же полагаем, что и в данном случае дело заключается не в эффекте отдачи. Находящийся в движении атом воспринимает, из-за эффекта Допплера, частоту встречного луча увеличенной, а частоту попутного луча – уменьшенной. При этом, поразительным образом, искусственно имитируется пребывание атома в условиях градиента частот (2.7), который порождает силовое воздействие, направленное в сторону понижения частот. В результате атом приобретает тормозящее ускорение – как это происходит согласно нашей модели действия тяготения на вещество (2.7).
Добавим, что на том же самом принципе – имитации градиента частот – производится подброс облачка атомов в «цезиевом фонтане». Для этого частоты лазеров, подсвечивающих облачко сверху и снизу, на время порядка одной миллисекунды сдвигают на несколько МГц – частоту подсветки сверху уменьшают, а частоту подсветки снизу увеличивают. В результате этой процедуры облачко атомов, испытавших кратковременную имитацию вертикального градиента частот, начинает свой свободный полёт вверх. Разумеется, традиционный подход объясняет такой подброс облачка атомов иначе – как результат накопления импульсов поглощённых фотонов из подсветки снизу. Для того, чтобы таким способом атому цезия была сообщена скорость в несколько метров в секунду, он должен накопить импульс от ~1000 оптических фотонов – что, за время «подбрасывающего режима», вполне возможно. Но обратим внимание на одно важное обстоятельство. Из опыта достоверно известно, что начальная скорость свободного полёта облачка ионов вверх – по окончании «подбрасывающего режима» - прямо пропорциональна применённой разности частот подсветок снизу и сверху. Между тем, увеличение этой разности частот отнюдь не должно приводить к прямо пропорциональному увеличению числа поглощённых фотонов за время «подбрасывающего режима». Импульсы же этих фотонов, практически, не изменяются при изменении их частоты на несколько МГц. Отчего же усиливается подброс при увеличении разности частот подсветок снизу и сверху? Наше объяснение, через имитацию градиента частот, выглядит предпочтительнее! Похоже, мы имеем здесь дело с парадоксальной ситуацией: экспериментаторы научились искусственно создавать условия, при которых возникает безопорное движение атомов – но, не веря глазам своим, пытаются втиснуть эти результаты в рамки традиционных понятий.