-->

Бег за бесконечностью (с илл.)

На нашем литературном портале можно бесплатно читать книгу Бег за бесконечностью (с илл.), Потупа Александр Сергеевич-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Бег за бесконечностью (с илл.)
Название: Бег за бесконечностью (с илл.)
Дата добавления: 15 январь 2020
Количество просмотров: 278
Читать онлайн

Бег за бесконечностью (с илл.) читать книгу онлайн

Бег за бесконечностью (с илл.) - читать бесплатно онлайн , автор Потупа Александр Сергеевич

В книге рассказывается о современных представлениях об одной из самых быстроразвивающихся фундаментальных наук — физике элементарных частиц. Основное внимание уделено описанию сильновзаимодействующих частиц — адронов, их поведению в различных реакциях при высоких энергиях.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 36 37 38 39 40 41 42 43 44 ... 51 ВПЕРЕД
Перейти на страницу:

Что делать, природа хитрей наших самых хитроумных проектов…

Однако в некоторых отношениях идеи «ядерной демократии» оказались, безусловно, полезны. Именно в борьбе с кварковой моделью сторонники нового подхода четко выяснили, что реальные кварки, если бы они были найдены, принесли бы теоретикам не только радость, но и множество трудностей. Они оказались бы опять-таки сложными адронами со всеми вытекающими отсюда последствиями. И снова возник бы вопрос: а из чего состоят кварки?

Это заставило сторонников кварковых моделей активно исследовать возможности запирания кварков — надо ведь как-то объяснить отсутствие их на опыте! И согласитесь, что протон как «кварковый атом» выглядит весьма необычно — вовсе не так, как его представляли себе во времена первых составных моделей. На структуру обычного знакомого нам атома, состоящего из ядра и вращающихся вокруг него электронов, эта картина похожа очень мало — вроде бы атом, но вывернутый наизнанку…

В общем, если говорить о какой-то единой атомистической концепции, то приходится признать, что она испытала за последнее десятилетие стремительное развитие.

Быть может, допуская некоторое преувеличение, стоит отметить, что «атомарное» устройство протона примерно настолько же сложнее атома Бора, насколько атом Бора сложней атома Демокрита. Это замечание, конечно, не связано с определением какой-то строгой геометрической пропорции между сложностью конкретных физических моделей. Но оно могло бы вызвать такое недоумение — ведь Демокритов атом рассматривался еще в доньютоновскую эпоху, и его структура представлялась в чисто механических образах, причем законы механики еще не были как следует поняты, не были известны фундаментальные силы… Атом Бора как модель возник уже через двести лет после создания новой физики, когда были известны и законы механического движения, и закон Кулона для силы взаимодействия между электроном и ядром, причем законов обычной механики для описания атома оказалось недостаточно… Неужели кварковая структура протона вносит существенно новые моменты в современную теорию?

В том-то и дело, что вносит! И пока мы еще далеко не полно представляем себе всю новизну положения. Но два момента в этой ситуации уже можно четко отметить.

Во-первых, мы вынуждены вводить в рассмотрение особый класс реальных объектов: кварки-партоны. Эти объекты, как мы их понимаем в настоящее время, совершенно необычны и не имеют предшественников в физике. Они являются элементами структуры адронов, но не могут быть выделены в качестве отдельных частиц, подобно другим элементарным частицам. Можно ли их все-таки считать реальными объектами? Это, как вы помните по обсуждению реальности резонансов, в известном смысле вопрос договоренности. Ведь и резонансы в свое время мы считали чем-то менее фундаментальным, чем стабильные адроны и не очень-то спешили объявить их особым типом элементарных частиц.

Кварки-партоны не способны оставить макроскопический след в веществе, подобно протону или пи-мезону; они не приводят и к таким перераспределениям наблюдаемых следов, как известные резонансы. В этом смысле они ненаблюдаемы и вряд ли будут наблюдаться в будущих экспериментах.

Однако кварки-партоны можно «увидеть» с помощью частиц, обладающих только слабыми и электромагнитными взаимодействиями. Эти частицы — фотон, нейтрино, электрон, мюон — способны проникнуть сквозь внешние оболочки адрона и провзаимодействовать непосредственно с его «кварковым атомом». Более того, один адрон тоже способен «увидеть» структуру другого адрона при взаимодействии на малых расстояниях, когда валентные кварки непосредственно рассеиваются друг на друге.

В отличие от других частиц кварк-партон не должен иметь определенного значения массы — это в высшей степени нестабильное образование. Его масса может иметь совершенно произвольное, случайное значение, зависящее от условий, в которых он находится.

Это не столь уж и удивительно, если учесть, что только у абсолютно стабильных частиц масса определена абсолютно точно. У некоторых короткоживущих резонансов погрешность в определении массы достигает 10 и более процентов. По-видимому, в случае кварков-партонов мы имеем дело с объектами, у которых погрешность в определении массы практически достигает 100 процентов и о какой-то одной определенной массе их говорить не имеет смысла. Единственные четко определенные величины, которые можно приписать кваркам-партонам, — различные заряды. В этом плане они как бы определены по одному свойству: иметь определенные электрический, барионный заряды, «странность» и «очарование».

Во-вторых, силы, действующие между кварками-партонами, весьма необычны. Они должны не убывать с ростом расстояния между ними, а, наоборот, возрастать. Такое представление противоречит привычным для нас понятиям о фундаментальных силах, которые известны уже давным-давно из теории тяготения и из электродинамики. Со школьных лет мы знаем, что закон Ньютона для тяготеющих масс и закон Кулона для взаимодействующих зарядов определяют силы, которые обратно пропорциональны квадрату расстояния между частицами. Еще быстрее убывают с ростом расстояния слабые и сильные взаимодействия между частицами, силы, открытые уже в нашем веке.

На малых расстояниях все эти силы чрезвычайно велики и становятся бесконечно интенсивными в пределе нулевых расстояний, то есть при непосредственном контакте точечных частиц.

Такое представление о характере фундаментальных сил стало своеобразным эталоном, и во многом благодаря успехам квантовой электродинамики. Но, как вы помните, сама квантовая электродинамика оказалась непригодной при исследовании процессов взаимодействия на малых расстояниях.

Поэтому физики стали активно искать новый эталон квантовой теории, который можно было бы использовать в таких условиях, когда электродинамика становится непригодной.

Еще в 1954 году американские теоретики Ч. Янг и Р. Миллс заинтересовались такой проблемой: что будет, если, скажем, изотопическая симметрия между протоном и нейтроном выполняется в каждой точке пространства и в каждый момент времени? Оказалось, что для соблюдения такой симметрии необходимо, чтобы существовало особое калибровочное поле, кванты которого и позволяют переносить взаимодействие между почти сохраняющимися зарядами — изотопическими спинами. Это калибровочное поле играло для указанного заряда примерно ту же роль, что электромагнитное поле — для электрического заряда.

Общая идея состояла в том, что любому точно или приближенно сохраняющемуся квантовому числу можно сопоставить определенное калибровочное поле, подобно тому, как сохраняющемуся электрическому заряду можно сопоставить электромагнитное поле. В сущности, физики хотели устранить явное неравноправие в семействе сохраняющихся квантовых чисел — зарядов. Ведь электрический заряд выступает как бы в двух ролях одновременно — он, во-первых, сохраняется и, во-вторых, характеризует собой определенное взаимодействие. Не является ли электромагнитное поле простейшим частным случаем калибровочных полей и нельзя ли каждому сохраняющемуся квантовому числу придать дополнительную роль заряда, взаимодействующего со своим особым калибровочным полем?

Такие вопросы встали перед физиками. В процессе более чем 20-летнего исследования различных калибровочных полей они и столкнулись с интересным явлением. Оказалось, что калибровочные поля, обладающие высокой симметрией, во многом отличаются от электромагнитного поля.

Например, на очень малых расстояниях соответствующие заряды могут обращаться в нуль, а на конечных расстояниях иметь вполне конечное значение. Это прямо противоположная ситуация по сравнению с электродинамикой! Получается, что заряд не ослабевает из-за экранировки виртуальными частицами, а, напротив, усиливается благодаря такой экранировке. А на малых расстояниях взаимодействие между частицами вообще исчезает.

Столь необычайный результат связан с такими свойствами калибровочных полей с высокой симметрией, которые не могут возникать в простейшем их случае у электромагнитного поля. Оказалось, что кванты сложных калибровочных полей способны непосредственно взаимодействовать друг с другом, тогда как фотоны не могут участвовать в таком взаимодействии — обычный свет «не светится», то есть не порождает новые фотоны.

1 ... 36 37 38 39 40 41 42 43 44 ... 51 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название