-->

О чем рассказывает свет

На нашем литературном портале можно бесплатно читать книгу О чем рассказывает свет, Суворов Сергей Викторович-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
О чем рассказывает свет
Название: О чем рассказывает свет
Дата добавления: 16 январь 2020
Количество просмотров: 393
Читать онлайн

О чем рассказывает свет читать книгу онлайн

О чем рассказывает свет - читать бесплатно онлайн , автор Суворов Сергей Викторович

В брошюре рассказывается, каким образом возникают лучи света из далеких миров. Не подлежит сомнению, что они могут начинать свой путь далеко от Земли и даже от солнечной системы. Где же во Вселенной начинают свой путь эти лучи? Как лучи из далеких миров превращены в мощное средство исследования Вселенной? Из каких веществ состоят Солнце и ряд других звезд? Как ученые узнали об этом? Об этом им рассказали лучи света, пришедшие от звезд. Куда и с какой скоростью движутся звезды? Об этом рассказали те же лучи света. Современные физики изучают тончайшие детали строения атомов. Как они этого достигают? И об этом им говорят лучи света, испускаемые атомами. В брошюре говорится, что свет рождается в веществе. Именно поэтому свет может рассказать, из каких веществ состоят звезды, какие металлы входят в состав сплавов, как построен атом, и многое другое.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 2 3 4 5 6 7 8 9 10 ... 35 ВПЕРЕД
Перейти на страницу:

Дифракция, как и интерференция, присуща только волновым процессам.

Оба эти явления сыграли решающую роль в спорах о природе света.

Волновые свойства света. Опыт Юнга

Ньютоновская корпускулярная гипотеза света господствовала очень долго — более полутораста лет. Но вот в начале XIX века английский физик Томас Юнг (1773—1829) и французский физик Огюстен Френель (1788—1827) произвели такие опыты, которые убедили физиков, что свет это не корпускулы (частицы), а волны.

Рис. 11. Опыт Юнга, или дифракция света от двух щелей (схема)

Юнг был убежден, что ньютоновы кольца — это результат интерференции световых волн. Чтобы доказать, что свет — это волны, он придумал такой опыт. Юнг взял непрозрачную пластинку и прорезал в ней две узкие параллельные щели. С одной стороны он осветил эти щели пучком параллельных одноцветных лучей, а с другой стороны поставил экран (рис. 11). Ученый рассуждал так. Вдоль лучей (на рисунке слева) идут плоские волны света. Они падают на щели. Если свет — это волны, то позади щелей А1 и А2 будет происходить световая дифракция. Щели А1 и А2 можно рассматривать как источники одноцветного света. От них вправо световые волны пойдут в виде цилиндрических (а в разрезе — круговых). Череда волн света, идущих от щели А1 пересечется с чередой волн от щели А2. Поэтому справа должны также наблюдаться и все явления интерференции. В местах, где «гребень» одной череды волн встретится со «впадиной» другой череды, будет потемнение. А там, где совпадут два «гребня» (а затем две «впадины»), произойдет усиление света. На экране справа должны появиться светлые (одноцветные) и темные «интерференционные» полосы.

Юнг оказался прав. Он проделал задуманный опыт и получил полосы интерференции. В основе этого опыта лежит явление дифракции света. Поэтому опыт Юнга называют еще дифракцией от двух щелей.

Немного позднее новый опыт, подтверждающий волновую природу света, проделал Френель. Он заставил источник света отразиться от двух наклоненных друг к другу зеркал; от обоих зеркал пошли две одинаковые череды отраженных световых волн, которые стали пересекаться. И в этом случае были получены интерференционные полосы.

Так было доказано, что свет обладает волновыми свойствами.

Но что это за волны, в начале XIX века никто не знал. Конечно, эти волны не похожи на водяные. Гребней и впадин вдоль светового луча нет. Физики полагали, что это какие-то упругие волны в мировой среде — эфире.

Механизм появления интерференции

Ученые всегда стремятся познать не только конечный и видимый результат, но и скрытые внутренние связи, протекающие в данном объекте, механизм, посредством которого реализуется результат. Это помогает им разобраться в наблюдаемом явлении, сделать важные выводы и дальнейшие предположения о его природе.

Последуем за рассуждениями ученых и попробуем разобраться в механизме появления интерференции. Нарисуем в проекции непрозрачную пластинку с двумя щелями А1 и А2 и проходящие сквозь них одноцветные лучи 1 и 2 (рис. 12). Оба интерферирующих луча мы берем параллельными; это значит, что геометрическое пересечение их возможно только на бесконечно большом расстоянии. Но с помощью системы линз можно свести эти лучи в одну точку на близком расстоянии (как это осуществляется, мы здесь рассматривать не будем). Расстояние между щелями (а значит, и между лучами) и ширина щелей на рисунке для ясности чрезмерно увеличены; на самом деле они очень малы, порядка тысячных долей миллиметра. Направление лучей мы измеряем углом между лучами и перпендикуляром к непрозрачной пластинке со щелями и обозначаем этот угол греческой буквой φ1 (фи).

Рис. 12. Определение разности хода волн двух параллельных лучей

Ясно, что до взаимной встречи луч 1 должен будет пройти путь больший, чем луч 2, а именно на величину, которая на рисунке обозначена буквами А1Б1. Пусть у этих лучей разность хода волн в точках А1 и А2 равна нулю. Когда волны света, идущие вдоль луча 1, достигнут точки Б1 образуется разность хода волн (по отношению к волнам, идущим вдоль луча 2). Она будет равна отрезку А1Б1.

Что будет на экране в результате взаимодействия лучей, идущих в указанном направлении под углом φ1— усилится яркость света или, напротив, он погаснет?

Это зависит от величины разности хода волн, выражаемой отрезком А1Б1. Если отрезок А1Б1 равен целому числу волн (0, λ, 2λ, Зλ, 4λ и т. д.), то в направлении под углом φ1 будет усиление света. Если же отрезок А1Б1 равен целому числу волн с половиной /2, 1 1/2λ, 2 1/2λ и т. д.), то в направлении φ1 лучи погасят друг друга.

Рис. 13. Зависимость разности хода волн от угла отклонения лучей

Если мы будем рассматривать другую пару интерферирующих лучей, идущих под углом φ2, то длина отрезка А1Б1 т. е. разность хода волн, будет уже другой; это ясно видно на рис. 13 : А1Б1 не равно А1Б2.

Будем последовательно рассматривать пары интерферирующих лучей, начиная с тех, которые идут под углом, равным нулю.

Ясно, что разность хода волн у этой первой пары лучей равна нулю; они усилят друг друга, на экране появится цветная яркая полоса. По мере увеличения угла отклонения лучей разность хода волн будет возрастать и приближаться к λ/2, яркость света в этих направлениях будет постепенно ослабляться. Когда при некотором угле разность хода волн достигнет λ/2, лучи в этом направлении погасят друг друга, на экране будет темная полоса.

При дальнейшем увеличении угла разность хода волн будет возрастать от λ/2 и выше. Яркость освещения в соответствующих местах экрана будет постепенно увеличиваться. Она будет наибольшей, когда разность хода волн достигнет λ. Далее при возрастании угла разность хода волн будет возрастать от λ и выше; когда она достигнет 1 1/2λ на экране снова появится темная полоса.

Так, при возрастании наклона лучей разность хода волн у пары соседних лучей будет поочередно равна 0, λ/2, 1λ, 1 1/2λ, 2λ, 2 1/2λ и т. д., а на экране в соответствующих направлениях будут перемежаться цветные и темные полосы.

Если мы будем освещать щели другими одноцветными лучами, то у них наклон лучей, дающих первую темную полосу, будет уже не тот, что у лучей первого цвета. Это происходит потому, что у них другая длина волны; поэтому отрезок, равный разности хода в полуволну, будет уже не А1Б1, а какой-то другой.

Так представляют себе физики механизм появления световой интерференции.

Как можно измерить длину световой волны

Опыт с интерференцией света замечателен не только тем, что он свидетельствует о наличии у света волновых свойств, он дает возможность измерить и длину волны интерферирующего света.

Рассмотрим на экране (рис. 14) те цветные полосы, в которых лучи света усиливают друг друга, т. е. где образуются «максимумы света». Одна из цветных полос по перпендикуляру от щели будет наиболее яркой; она образуется от лучей, которые идут после прохождения щелей под углом φ1 равным нулю. Физики назвали эту яркую цветную полосу «максимумом нулевого порядка». По обе стороны от нее будут цветные полосы одинаковой яркости, но послабее, чем максимум нулевого порядка. Это — максимумы первого порядка.

1 2 3 4 5 6 7 8 9 10 ... 35 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название