-->

Вечное движение. История одной навязчивой идеи

На нашем литературном портале можно бесплатно читать книгу Вечное движение. История одной навязчивой идеи, Орд-Хьюм Артур-- . Жанр: Физика / Технические науки. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Вечное движение. История одной навязчивой идеи
Название: Вечное движение. История одной навязчивой идеи
Дата добавления: 16 январь 2020
Количество просмотров: 276
Читать онлайн

Вечное движение. История одной навязчивой идеи читать книгу онлайн

Вечное движение. История одной навязчивой идеи - читать бесплатно онлайн , автор Орд-Хьюм Артур
Идея вечного двигателя на протяжении веков казалась многим реальной, легко осуществимой. Но шло время, а вожделенная идея оставалась все такой же далекой от реализации, как и прежде. Тем не менее безуспешные, казалось бы, усилия изобретателей вечного двигателя сыграли определенную роль к истории научной мысли. Об этом и рассказывает книга, написанная .английским авиатором и инженером. Для широкого круга читателей.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 2 3 4 5 6 7 8 9 10 ... 45 ВПЕРЕД
Перейти на страницу:

Поиски вечного движения можно отнести к числу тех научных заблуждений, которые пришли на смену опытам алхимиков и построениям квадратуристов {11}. Однако столетия, в течение которых умы ученых мужей были заняты подобными тщетными исканиями, обогатили науку знаниями, куда более ценными, чем цели, преследуемые этими фанатиками. Вот что писал по этому поводу в своей «Теории теплоты» Престон: «Алхимики сделали для химии как науки то же, что изобретатели вечных двигателей для натурфилософии. Их поиски неизбежно привели к открытиям величайшей теоретической и практической важности».

Одним из первых осознал важность проблемы вечного движения для экспериментальной науки Симон Стевин, родившийся в 1548 году в Брюгге {12}. Этот великий математик был также человеком практики: среди его изобретений, относящихся к началу XVII века, есть повозка под парусами, на которой он катался вместе с друзьями по побережью Нидерландов. Стевин был ярым сторонником десятичной денежной системы и десятичных дробей (напомним, что эти дроби тогда еще не получили повсеместного применения в практике повседневных вычислений); он ввел в физику понятие устойчивого и неустойчивого равновесия. Однако наиболее важным его достижением в контексте данной книги является доказательство закона равновесия тел на наклонной плоскости, которое он получил, показав, что вечного движения не существует {13}.

Вечное движение. История одной навязчивой идеи - i_002.jpg

Рис. 1. Стевин показал, что четырнадцать одинаковых шаров, соединенных однородным шнуром, так располагаются на треугольной раме ABC, что четыре шара, лежащие на наклонной плоскости АС рамы, и два шара, лежащие на плоскости CB рамы, уравновешиваются восемью шарами на кривой AEB.

Его рассуждения сводились к следующему. Вообразим, что на гибкий шнур, соединенный в кольцо, на равном расстоянии друг от друга нанизано четырнадцать шаров, одинаковых по весу. Шнур подвешен на подставку треугольной формы, состоящую из двух неравных наклонных плоскостей и одного общего горизонтального основания. Не нарушая общности рассуждений, положим ради простоты, что AC = 2BC, а на участке АЕВ шнура расположено восемь шаров. При этом возможны два случая: либо шары находятся в состоянии равновесия, либо равновесие отсутствует. В последнем случае начнется движение шаров, которое, однако, не изменит их первоначального расположения на подставке. На участке АЕВ всегда будет восемь шаров, на плоскости АС — четыре, а на плоскости ВС — два. Следовательно, движение такой системы будет непрерывным, иными словами, вечным. Стевин не только не допускал этого, но считал нарушение равновесия в таких условиях совершенно невозможным. В своей книге по теории наклонных плоскостей, опубликованной в конце шестнадцатого столетия, он подробно рассмотрел эту проблему. Прежде всего он показал, что при удалении восьми шаров с участка AEB равновесие не нарушается, поскольку четыре шара на кривой АЕ уравновешивают четыре шара на кривой ЕВ. Именно по этой причине и сохраняется равновесие между четырьмя шарами на большей плоскости (АС) и двумя шарами на меньшей (СВ). Если даже расположить плоскость СВ вертикально так, что останется только одна наклонная плоскость АС, условие равновесия будет по-прежнему выполняться. Таким образом, мы нашли, что соотношение сумм весов шаров должно быть таким же, как соотношение между длинами плоскостей, то есть 4×2 = АС×ВС. Если теперь принять сумму весов двух шаров за действующую силу, а сумму весов четырех шаров за противодействующую, то получится следующая пропорция:

Вечное движение. История одной навязчивой идеи - i_003.jpg

Это хорошо известное условие равновесия сил на наклонной плоскости, когда направление действующей силы параллельно наклонной плоскости.

Эрнст Мах (1838—1916), австрийский физик и популяризатор науки, высоко ценил труды Стевина. Однако Мах считал, что в большинстве своем выводы фламандского ученого основаны на чисто эмпирических наблюдениях.

Вот что писал он по этому поводу в своей «Механике»: «Совершенно ясно, что в исходных предположениях Стевина о неподвижности бесконечной цепи содержатся утверждения чисто интуитивного характера. Он сам верит, и мы верим вместе с ним, что движение в подобных условиях никогда и никем не наблюдалось, что оно просто не существует. Это утверждение столь логично, что мы принимаем все вытекающие из него выводы относительно закона равновесия. Доводы Стевина впечатляют своей оригинальностью, а результаты его рассуждений содержательнее первоначальных предположений».

Вечное движение. История одной навязчивой идеи - i_004.jpg

Рис. 2.

Другим ученым, отрицавшим возможность существования вечного движения, был Галилей (1564—1642). Это ясно видно из его работы, посвященной сравнению движения тел по наклонной плоскости с их свободным падением. Он предположил, что скорость, приобретаемая телом при движении из точки А в точку В (если пренебречь силой трения), должна быть равна скорости тела в точке С при его свободном падении из точки А. В противном случае, доказывал Галилей, шар, двигаясь вверх по наклонной плоскости, подымался бы выше того уровня, с которого он скатился, независимо от наклона плоскости и собственного веса. Однако чисто теоретические рассуждения не удовлетворяли первоклассного экспериментатора. Он решил проверить свои выводы на практике. Схема эксперимента, который осуществил Галилей, изображена на рис. 3. Один конец гибкого шнура привязан к гвоздю, вбитому, в стену, на другом конце подвешен тяжелый шар.

Поднимая шар маятника из положения М в положение А так, чтобы при этом сохранялось натяжение нити, а затем отпуская его, Галилей установил, что шар поднимается на ту же высоту по другую сторону от вертикальной линии. Небольшое расхождение высот он отнес за счет сопротивления воздуха.

Вечное движение. История одной навязчивой идеи - i_005.jpg

Рис. 3. Схема эксперимента Галилея.

Затем он видоизменил эксперимент. В точке X справа от вертикально висящего шнура в стену вбивался еще один гвоздь. Теперь шар описывал дугу АМ, а когда шнур зацеплялся о гвоздь, часть шнура СХ прекращала движение, и шар описывал новую дугу МК. Третий гвоздь вбивался ниже точки X, в точке Y, и эксперимент возобновлялся. На этот раз шар, как и раньше, сперва описывал дугу АМ, а затем новую дугу MG. Ученый установил, что каждый шар поднимался на одну и ту же высоту (то есть достигал уровня горизонтальной линии АВ). Следовательно, наклон плоскости (см. рис. 2) не влиял на скорость тела. И хотя скорость, приобретаемая при движении тела из A в С, равна скорости, приобретаемой при движении из A в В, из этого не следовало, что время движения из А в В равно времени движения из А в С.

Вслед за Галилеем Марен Мерсенн (1588—1648) {14} категорически отрицал возможность существования вечного движения, а все попытки построить вечный механизм сравнивал с поисками алхимиками философского камня.

Христиан Гюйгенс (1629—1695), по-видимому, был совершенно не знаком с работой Галилея, когда решил с помощью маятника экспериментально доказать, что центр тяжести тела, свободно движущегося под действием силы тяготения, не может подняться выше точки, откуда началось его движение. Голландский ученый верил, однако, в возможность создания вечного двигателя, но не с помощью сил тяжести, а посредством использования других естественных явлений и прежде всего магнитного притяжения и отталкивания {15}.

1 2 3 4 5 6 7 8 9 10 ... 45 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название