Эволюция физики
Эволюция физики читать книгу онлайн
Книга Альберта Эйнштейна и Леопольда Инфельда знакомит читателя с развитием основных идей физики. В книге даётся «представление о вечной борьбе изобретательного человеческого разума за более полное понимание законов, управляющих физическими явлениями», в ней показано, как каждая последующая, уточнённая картина мира закономерно сменяет предыдущую. Книга отражает известную среди специалистов эйнштейновскую оценку задач современной физики и её основных тенденций развития, которые в конечном счёте ведут к созданию единой физической теории. Мастерское изложение делает книгу А. Эйнштейна и Л. Инфельда доступной и для неспециалистов. Книга переведена на многие языки мира, неоднократно переиздавалась и переиздаётся в различных странах.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Рис. 6
Значение пунктирного вектора ясно. Он представляет собой изменение скорости, вызванное толчком. В случае, когда сила направлена против движения и движение замедляется, диаграмма выглядит иначе (рис. 7).
Рис. 7
Пунктирный вектор опять соответствует изменению скорости, но в этом случае его направление иное. Ясно, что не только сами скорости, но и их изменения — тоже векторы. Но всякое изменение скорости вызвано внешней силой; следовательно, и сила должна быть представлена тоже вектором. Для того чтобы характеризовать силу, недостаточно установить, с каким усилием мы толкаем тележку; мы должны также сказать, в каком направлении мы толкаем. Сила, как и скорость, и её изменение, должна быть представлена вектором, а не только одним числом. Поэтому внешняя сила — это тоже вектор, который должен иметь то же направление, что и изменение скорости. На обоих рисунках пунктирные векторы показывают как направление силы, так и изменение скорости.
Здесь скептик может заметить, что он не видит никакого преимущества от введения векторов. Всё, что было сделано, — это перевод признанных ранее фактов на необычный и сложный язык. В этой стадии, в самом деле, было бы трудно убедить скептика, что он не прав. Пока он действительно прав. Но мы увидим, что именно этот странный язык приводит к важным обобщениям, в которых векторы оказываются существенными.
Загадка движения
До тех пор пока мы имеем дело с прямолинейным движением, мы далеки от понимания движений, наблюдаемых в природе. Мы должны рассмотреть криволинейные движения. Наш следующий шаг — определить законы, управляющие такими движениями. Это нелёгкая задача.
В случае прямолинейного движения понятия скорости, изменения скорости и силы оказались чрезвычайно полезными. Но мы не видим непосредственно, как можно применить их к случаю криволинейного движения. В самом деле, можно представить себе, что старые понятия окажутся непригодными для описания движения в общем случае и что нужно создать новые понятия. Следует ли нам пробовать идти старыми путями или нужно искать новые?
Обобщение понятий — процесс, часто применяемый в науке. Метод обобщения не определён однозначно, ибо обычно существует множество путей его осуществления. Однако при всяком обобщении должно быть строго удовлетворено одно требование: любое обобщённое понятие должно сводиться к первоначальному, когда выполнены первоначальные условия.
Лучше всего это можно объяснить на примере, с которым мы имеем дело теперь. Мы можем попробовать обобщить прежние понятия скорости, изменения скорости и силы для случая движения вдоль кривой. Когда мы говорим о кривой, мы включаем в это понятие и прямую. Прямая есть самый простой пример кривой. Поэтому если скорость, изменение скорости и сила введены для движения по кривой, то они тем самым автоматически вводятся и для движения по прямой. Но этот результат не должен противоречить результатам, полученным раньше. Если кривая становится прямой, то все обобщённые понятия должны свестись к обычным понятиям, описывающим прямолинейное движение. Но это ограничение недостаточно, чтобы однозначно определить обобщение. Оно явно оставляет многие возможности. История науки показывает, что самые простые обобщения иногда оказываются удачными, а иногда нет. Мы должны сперва делать догадки. В нашем случае нетрудно найти правильный метод обобщения. Новые обобщённые понятия оказываются очень удачными и помогают нам понять как движение брошенного камня, так и движение планет.
Что же означают слова «скорость», «изменение скорости» и «сила» в общем случае криволинейного движения? Начнём со скорости. Пусть вдоль кривой слева направо движется очень маленькое тело (рис. 8). Такое маленькое тело часто называют частицей. Точка на кривой на нашем рисунке показывает положение частицы в некоторый момент времени. Какова скорость, соответствующая этому моменту времени и положению? Опять руководящая идея Галилея выводит нас на тот путь, каким введена скорость. Мы должны ещё раз использовать своё воображение и представить себе идеализированный эксперимент. Частица движется вдоль кривой слева направо под влиянием внешних сил. Представим себе, что в данный момент времени в точке, отмеченной на рисунке, все эти силы внезапно перестают действовать. Тогда, согласно закону инерции, движение должно быть равномерным и прямолинейным. Практически мы, конечно, никогда не можем полностью освободить тело от внешних влияний. Мы можем только сделать предположение «что должно произойти, если…» и судить об уместности нашего предположения с помощью заключений, которые можно из него сделать, и проверки согласия этих заключений с экспериментом.
Рис. 8
Вектор на рис. 9 указывает предполагаемое направление равномерного движения в случае, если бы все внешние силы исчезли. Это так называемое тангенциальное, или касательное, направление. Если смотреть на движущуюся частицу через микроскоп, то можно увидеть очень небольшую часть её пути, представляющуюся в виде небольшого, едва искривлённого отрезка. Касательная линия является его продолжением. Нарисованный таким образом вектор представляет скорость в данный момент. Вектор скорости лежит на касательной. Его длина представляет собой численную величину скорости или ту скорость, которая указывается, например, спидометром автомашины.
Рис. 9
Наш идеализированный эксперимент, в котором уничтожены силы для того, чтобы найти вектор скорости, нельзя принимать слишком серьёзно. Он только помогает нам понять, что́ мы должны называть вектором скорости при криволинейном движении, и позволяет нам определить его для данного момента в данной точке.
На рис. 10 показаны векторы скорости для трёх различных положений частицы, движущейся вдоль кривой. В этом случае во время движения меняются не только направления, но и величины скорости, как показывает длина векторов.
Рис. 10
Удовлетворяет ли это новое понятие скорости требованию, сформулированному для всех обобщений? Иначе говоря, сводится ли оно к прежнему понятию скорости, если кривая становится прямой? Очевидно, да. Касательная к прямой есть сама прямая. Вектор скорости лежит на линии движения, так же как это было в случае движущейся тележки или катящегося шара.
Следующий шаг — это введение изменения скорости частицы, движущейся вдоль кривой. Оно также может быть выполнено различными путями, из которых мы выберем самый простой и удобный. Рис. 10 показывал несколько векторов скоростей, представляющих движение вдоль кривой, в разных точках. Первые два из них можно опять нарисовать так, чтобы они имели общую исходную точку (рис. 11), что, как мы видели, возможно проделывать с векторами. Пунктирный вектор мы называем изменением скорости. Его начальная точка представляет собой конец первого вектора, а конечная точка — конец второго вектора. Этим и определено изменение скорости. Такое определение может, на первый взгляд, показаться искусственным и бессмысленным. Оно становится гораздо яснее в частном случае, в котором векторы 1 и 2 имеют одинаковое направление (рис. 12). Конечно, это означает переход к случаю прямолинейного движения. Если оба вектора имеют одну и ту же начальную точку, то пунктирный вектор опять связывает их конечные точки. Рис. 12 совпадает с рис. 6, а прежнее понятие оказывается частным случаем нового понятия. Следует заметить, что мы должны были разделить обе линии на рисунке, ибо иначе они совпали бы и стали бы неразличимыми.