Фейнмановские лекции по физике 1. Современная наука о природе, законы механики

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике 1. Современная наука о природе, законы механики, Фейнман Ричард Филлипс-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике 1. Современная наука о природе, законы механики
Название: Фейнмановские лекции по физике 1. Современная наука о природе, законы механики
Дата добавления: 15 январь 2020
Количество просмотров: 432
Читать онлайн

Фейнмановские лекции по физике 1. Современная наука о природе, законы механики читать книгу онлайн

Фейнмановские лекции по физике 1. Современная наука о природе, законы механики - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном иМэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 33 34 35 36 37 38 39 40 41 ... 65 ВПЕРЕД
Перейти на страницу:

v=x/?=10t0+5?. (8.4)

Теперь мы уже знаем, что нужно делать, чтобы получить скорость точно в момент t0: нужно брать отрезок ? все меньше и меньше, т. е. устремлять его к нулю. Таким путем из уравнения (8.4) получим

v (в момент t0) = 10t0,

В нашей задаче t0=5 сек, следовательно, скорость равна v=10?5=50 м/сек. Это и есть нужный ответ. Раньше, когда ? бралось равным 0,1 и 0,001 сек, получалась несколько большая величина, чем 50 м/сек, но теперь мы видим, что в действительности она в точности равна 50 м/сек.

§ 3. Скорость как производная

Процедура, которую мы только что выполнили, настолько часто встречается в математике, что для величин ? и x: было придумано специальное обозначение: ? обозначается как ?t, а х – как ?s. Величина ?t означает «небольшой добавок к t», причем подразумевается, что этот добавок можно делать меньше. Значок ? ни в коем случае не означает умножение на какую–то величину, точно так же как sin? не означает sin?. Это просто некоторый добавок ко времени, причем значок ? напоминает нам о его особом характере. Ну, а если ? не множитель, то его нельзя сократить в отношении ?s/?t. Это все равно, что в выражении sin?/sin2? сократить все буквы и получить 12. В этих новых обозначениях скорость равна пределу отношения ?s/?t при ?t, стремящемся к нулю, т. е.

Фейнмановские лекции по физике 1. Современная наука о природе, законы механики - img_77.jpg
(8.5)

Это по существу формула (8.3), но теперь яснее видно, что здесь все изменяется, а, кроме того, она напоминает, какие именно величины изменяются.

Существует еще один закон, который выполняется с хорошей точностью. Он гласит: изменение расстояния равно скорости, умноженной на интервал времени, за которое это изменение произошло, т. е. ?s=v?t. Это правило строго справедливо только тогда, когда скорость не изменяется в течение интервала ?t, а это, вообще говоря, происходит, только когда ?t достаточно мало. В таких случаях обычно пишут ds=vdt, где под dt подразумевают интервал времени ?t при условии, что он сколь угодно мал. Если интервал ?t достаточно велик, то скорость за это время может измениться и выражение ?s = v?t будет уже приближенным. Однако если мы пишем dt, то при этом подразумевается, что интервал времени неограниченно мал и в этом смысле выражение ds=vdt точное. В новых обозначениях выражение (8.5) имеет вид

Фейнмановские лекции по физике 1. Современная наука о природе, законы механики - img_78.jpg

Величина ds/dt называется «производной s no (такое название напоминает о том, что изменяется), а сложный процесс нахождения производной называется, кроме того, дифференцированием. Если же ds и dt появляются отдельно, а не в виде отношения ds/dt, то они носят названия дифференциалов. Чтобы получше познакомить вас с новой терминологией, скажу еще, что в предыдущем параграфе мы нашли производную от функции 5t2, или просто производную от 5t2. Она оказалась равной 10t. Когда вы больше привыкнете к новым словам, вам станет более понятна сама мысль. Для тренировки давайте найдем производную более сложной функции. Рассмотрим выражение s=At3+Bt+C, которое может описывать движение точки. Буквы А, В, С, так же как и в обычном квадратном уравнении, обозначают постоянные числа. Нам нужно найти скорость движения, описываемого этой формулой в любой момент времени t. Рассмотрим для этого момент t+?t, причем к s прибавится некоторая добавка ?s, и найдем, как выражается ?s через ?t. Поскольку

s+?s=A(t+?t)2+Bt+?t+C=At3+Bt+C+3At2?t+B?t+3At+3At(?t)2+A(?t)3

а

s=At3+Bt+C,

то ?s=3At2?t+B?t+3At+3At(?t)2+A(?t)3.

Но нам нужна не сама величина ?s, а отношение ?s/?t. После деления на ?t получим выражение

?s/?t=3At2+B+3At?t+A(?t)2, которое после устремления ?t к нулю превратится в

?s/?t=3At2+B.

В этом состоит процесс взятия производной, или дифференцирования функций. На самом деле он несколько легче, чем это кажется на первый взгляд. Заметьте, что если в разложениях, подобных предыдущим, встречаются члены, пропорциональные (?t)2 или (?t)3 или еще более высоким степеням, то их можно сразу вычеркнуть, поскольку они все равно обратятся в нуль, когда в конце мы будем ?t устремлять к нулю. После небольшой тренировки вы сразу будете видеть, что нужно оставлять, а что сразу отбрасывать. Существует много правил и формул для дифференцирования различных видов функций. Их можно либо запомнить, либо пользоваться специальными таблицами. Небольшой список таких правил приводится в табл. 8,3.

Таблица 8.3 некоторые производные

Фейнмановские лекции по физике 1. Современная наука о природе, законы механики - img_79.jpg

s, u, v, w – произвольные функции;

а, b, с, n – произвольные постоянные.

§ 4. Расстояние как интеграл

Обсудим теперь обратную проблему. Пусть вместо таблицы расстояний нам дана таблица скоростей в различные моменты времени, начиная с нуля. В табл. 8.4 представлена зависимость скорости падающего шара от времени. Аналогичную таблицу можно составить и для машины, если записывать показания спидометра через каждую минуту или полминуты. Но можно ли, зная скорость машины в любой момент времени, вычислить расстояние, которое ею было пройдено?

Таблица 8.4 скорость падающего шара

Фейнмановские лекции по физике 1. Современная наука о природе, законы механики - img_80.jpg

Эта задача обратна той, которую мы только что рассмотрели. Как же решить ее, если скорость машины непостоянна, если она то ускоряется до 90 км/час, то замедляется, затем где–то останавливается у светофора и т.д.? Сделать это нетрудно. Нужно использовать ту же идею и выражать полное расстояние через бесконечно малые его части. Пусть в первую секунду скорость будет v1 , тогда по формуле ?s= v1?t можно вычислить расстояние, пройденное за эту секунду. В следующую секунду скорость будет несколько другой, хотя, может быть, и близкой к первоначальной, а расстояние, пройденное машиной за вторую секунду, будет равно новой скорости, умноженной на интервал времени (1 сек). Этот процесс можно продолжить дальше, до самого конца пути. В результате мы получим много маленьких отрезков, которые в сумме дадут весь путь. Таким образом, путь является суммой скоростей, умноженных на отдельные интервалы времени, или s = ?v?t, где греческая буква ? (сигма) означает суммирование. Точнее, это будет сумма скоростей в некоторые моменты времени, скажем ti , умноженные на ?t:

Фейнмановские лекции по физике 1. Современная наука о природе, законы механики - img_81.jpg
(8.6)

причем каждый последующий момент ti+1 находится по правилу ti+1=ti+?t. Но расстояние, полученное этим методом, не будет точным, поскольку скорость за время ?t все же изменяется. Выход из этого положения заключается в том, чтобы брать все меньшие и меньшие интервалы ?t, т. е. разбивать время движения на все большее число все меньших отрезков. В конце концов мы придем к следующему, теперь уже точному выражению для пройденного пути:

Фейнмановские лекции по физике 1. Современная наука о природе, законы механики - img_82.jpg
(8.7)

Математики придумали для этого предела, как и для дифференциала, специальный символ. Значок ? превращается в d, напоминая о том, что интервал времени сколь угодно мал, а знак суммирования превращается в ? – искаженное большое S, первая буква латинского слова «Summa». Этот значок назван интегралом. Таким образом, мы пишем

s=?v(t)dt, (8.8)

где v(t) – скорость в момент t. Сама же операция суммирования этих членов называется интегрированием. Она противоположна операции дифференцирования в том смысле, что производная этого интеграла равна v(t), так что один оператор (d/dt) «уничтожает» другой (?). Это дает возможность получать формулы для интегралов путем обращения формул для дифференциалов: интеграл от функции, стоящей в правой колонке табл.8.3, будет равен функции, стоящей в левой колонке. Дифференцируя все виды функций, вы сами можете составить таблицу интегралов.

1 ... 33 34 35 36 37 38 39 40 41 ... 65 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название