-->

История лазера

На нашем литературном портале можно бесплатно читать книгу История лазера, Бертолотти Марио-- . Жанр: Физика / Научпоп. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
История лазера
Название: История лазера
Дата добавления: 16 январь 2020
Количество просмотров: 323
Читать онлайн

История лазера читать книгу онлайн

История лазера - читать бесплатно онлайн , автор Бертолотти Марио

Книга, которую Вы взяли в руки — редкий сплав добротного изложения основ современной физики и ее истории. История науки предстает здесь в неразрывной связи драмы идей в познании природы и судеб конкретных людей. Все эти выдающиеся исследователи были захвачены в круговорот жестокой истории XX века, которой в книге уделено немало страниц.

Автору удалось совместить рассказы о жизненном пути замечательных личностей с пристальным, шаг за шагом, анализом гипотез, теории и эксперимента.

Для широкого круга читателей, интересующихся современной физикой.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 32 33 34 35 36 37 38 39 40 ... 93 ВПЕРЕД
Перейти на страницу:
История лазера - i_026.jpg

Рис. 23. Явление дисперсии. На рисунке показано изменение показателя преломления прозрачного стекла в зависимости от длины волны, выраженной в нанометрах (1нм = 10—9 м)

Явление зависимости скорости распространения света (т.е. показатель преломления) от длины волны называется дисперсией света (рис. 23). Причина, почему свет разного цвета распространяется в одной и той же среде с разными скоростями, была открыта благодаря исследованию того, как электроны в атомах испускают свет. Простейшей моделью может быть система, в которой электрон в атоме совершает регулярные движения вперед и назад, подобно маятнику часов. Такое движение называется в физике периодическим. Во время своего движения электрон испытывает ускорение и, поэтому, согласно уравнениям Максвелла, должен испускать излучение. Все это можно представить простой моделью, в которой электрон упруго связан с атомом, как если бы он был связан пружиной (гармонический осциллятор). Эта модель уже использовалась для описания испускания излучения черным телом. Теперь она используется для объяснения испускания и поглощения электромагнитного излучения веществом.

Чтобы объяснить, почему атом может испускать многие частоты, можно предположить, что он состоит из многих осцилляторов, способных испускать или поглощать определенные частоты, и что именно они и обнаруживаются на эксперименте. На основе такого подхода П. Друде, В. Фойхт (1850— 1919) и позднее X. А. Лоренц разработали теорию дисперсии, которая была в хорошем согласии с экспериментом и давала удовлетворительное объяснение дисперсии и поглощения света. Изучая математически отклик осцилляторов на электрическое поле волны, можно вывести показатель преломления и его зависимость от длины волны. Получается интересный результат, показывающий, что на тех длинах волн, которые далеки от тех, на которых атом поглощает, показатель преломления равен единице, т.е. свет распространяется с той же скоростью, что и в вакууме, и среда не оказывает на него влияния. Однако когда длина волны приближается к той, на которой атом может поглощать, показатель преломления уменьшается (когда поглощение увеличивается) и после достижения минимума снова начинает увеличиваться до единицы на длине волны, на которой атом поглощает (но мы не можем выявить это, поскольку весь свет поглощается). Далее, когда длина волны продолжает увеличиваться, показатель преломление растет, достигает максимума, а затем возвращается к единице в области далекой от поглощения. Это именно то, что и наблюдается на эксперименте. Поведение показателя преломления между минимумом и максимумом очень трудно для измерений, так как это область сильного поглощения. Она указывается как аномальная дисперсия, поскольку в этой области показатель преломления увеличивается при увеличении длины волны, вместо того, чтобы уменьшаться (нормальная дисперсия).

Классические уравнения, получаемые при расчетах, были в очень хорошем согласии с экспериментом и давали удовлетворительную интерпретацию дисперсии и поглощения. Однако когда теория Бора стационарных состояний отвергла классическую теорию упруго связанных электронов, эти формулы, несмотря на их de facto правильность, полностью потеряли свое теоретическое оправдание. Первые попытки сформулировать теорию дисперсии в терминах квантово-механических концепций, предпринятые П. Дебаем (1881—1958), А. Зоммерфельдом (1868—1951) и Ч. Дэвиссоном (1881 — 1958), оказались неудовлетворительными главным образом из-за того, что теперь в рамках новой модели атома, при приложении электрического поля световой волны, колебания совершались только, когда электрон возмущался со своей стационарной орбиты. В этом случае он начинал колебаться вокруг положения равновесия с частотой, которая, очевидно, очень отличается от той, что соответствует переходу с одной орбиты на другую.

Первый корректный шаг к квантово-механической интерпретации дисперсии был сделан Ладенбургом. Рудольф Вальтер Ладенбург играет важную роль в нашей истории. Как мы увидим, он очень близко подошел к открытию усиления за счет вынужденного излучения, которое является основой работы лазеров.

Ладенбург родился в Киле (Германия) 6 июня 1882 г. и скончался в Принстоне (Нью Джерси, США) 3 апреля 1952 г. Он был младшим из трех сыновей известного химика Альберта Ладенбурга. Учился в школе г. Бреслау, где его отец, автор ряда важных работ по органической химии, был профессором химии в местном университете. В 1902 г. Ладенбург отправился в Мюнхен, и в 1906 г. защитил диссертацию по вязкости под руководством Рентгена. С 1906 по 1924 г. в университете Бреслау он был сначала доцентом, а потом профессором. За это время он проводил исследования фотоэлектрического эффекта и подтвердил, что энергия фотоэлектрона не зависит от интенсивности света, но пропорциональна его частоте.

В 1911 г. он женился и тремя годами позже поступил на службу в армию, в 1914—1918 гг. выполнял исследования по использованию звуковых сигналов для обнаружения целей (сонар). В 1924 г. он поступил в Институт Кайзера Вильгельма в Берлине по приглашению директора Ф. Габера (1868—1934), нобелевского лауреата по химии (1918 г.). В этом престижном институте, где также работал Эйнштейн, он оставался до 1931 г. в должности руководителя физического отдела, после чего перешел в Принстон на кафедру физики приемником Карла Комптона (1887—1954) брата Артура.

После Первой мировой войны Ладенбург искал способ связать постулаты Бора об излучении и поглощении света атомами с моделью гармонических осцилляторов. Хотя он не сделал ясных упоминаний этого, он предположил, что когда атом возмущается, электрон не колеблется вокруг своей орбиты, как следовало бы ожидать из классических концепций, но падает на нижний уровень в согласии с моделью Бора, и этот процесс можно описать классически, как если бы электрон был бы маленьким гармоническим осциллятором, который колеблется как раз с частотой перехода.

Введение коэффициентов Эйнштейна поглощения, спонтанного и вынужденного излучения позволило ему предложить теорию, способную объяснить оптические свойства вещества. Он начал в 1921 г. с вывода выражения, которое позволило ему найти для каждого атома, сколько электронов участвует в оптическом явлении (это число он назвал числом дисперсных электронов), используя коэффициент Эйнштейна для спонтанного излучения. Он получил это число, вычисляя энергию, которая излучается и поглощается набором атомов, находящихся в тепловом равновесии с излучением. При этом использовалась модель осциллятора, с одной стороны, и квантовая теория Бора — с другой. Согласно принципу соответствия Бора, результат этих двух расчетов, хотя и совершенно различных, должен был быть тем же самым. Итак, путем уравнения этих результатов, было найдено соотношение между числом электронов, которые участвуют в поглощении и излучении, и коэффициентом Эйнштейна, который описывает спонтанное излучение атомов. Число электронов, участвующих в этих процессах, можно определить из экспериментальных измерений излучения, поглощения, аномальной дисперсии и др. Тем самым можно определить вероятность, с какой происходят эти переходы. Ладенбург использовал этот результат для измерений, которые он выполнил с водородом и натрием в 1921-1923 гг.

В 1923 г. он вместе с Ф. Райхе (1883—1963) вывел соотношение, которое связывает показатель преломления на данной длине волны с коэффициентом Эйнштейна для спонтанного излучения. Однако эта формула оказалась неполной, так как она не включала эффект вынужденного излучения. Он был учтен введением соответствующего члена Крамерсом и Гейзенбергом. Фундаментальный шаг был сделан в 1924 г. Крамерсом, который модифицировал формулу, полученную Ладенбургом, и показал, что необходимо ввести некоторый член для точного учета спонтанного излучения.

Хендрик Антон Крамере родился 17 декабря 1894 г. в Роттердаме в семье врача. Он обучался в Лейденском университете под руководством П. Эренфеста (1880—1933), который с 1912 г. занял место Лоренца. В 1916 г. Крамере отправился в Копенгаген, для работы с Нильсом Бором. Когда в 1920 г. открылся Институт Теоретической Физики Бора, Крамере был сперва ассистентом, а затем в 1924 г. лектором. В 1926 г. он принял должность заведующего кафедрой теоретической физики в Утрехте, а в 1934 г. вернулся в Лейден как приемник Эренфеста, который в сентябре 1933 г. покончил жизнь самоубийством. С 1936 г. вплоть до своей смерти 24 апреля 1952 г. Крамере преподавал в Лейдене, и посетил ряд стран, включая США.

1 ... 32 33 34 35 36 37 38 39 40 ... 93 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название