Приключения радиолуча

На нашем литературном портале можно бесплатно читать книгу Приключения радиолуча, Родиков Валерий Евгеньевич-- . Жанр: Физика / Научпоп. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Приключения радиолуча
Название: Приключения радиолуча
Дата добавления: 16 январь 2020
Количество просмотров: 211
Читать онлайн

Приключения радиолуча читать книгу онлайн

Приключения радиолуча - читать бесплатно онлайн , автор Родиков Валерий Евгеньевич

 

 

Книга об одном из великих открытий в истории человечества — радиоволнах, о прошлом, настоящем и возможном будущем обширнейшей научно-технической отрасли — радиоэлектроники. Читатель также узнает о причудах радиоволн: радиолокационных миражах-«призраках», «ангелах», «летающих тарелках»; о том, вредны ли радиоизлучения…

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 32 33 34 35 36 37 38 39 40 ... 74 ВПЕРЕД
Перейти на страницу:

Инженеры сейчас всерьез размышляют над тем, что еще недавно проходило по ведомству научной фантастики. Например, как уместить музыкальный синтезатор, способный играть за целый оркестр, в одном кристалле. Полагают, что в недалеком будущем появится «кремниевый секретарь», который сумеет говорить и понимать речь, составлять телеграммы, назначать совещания и в вежливой форме напоминать о делах. А к концу века ожидаются и личные роботы.

Уже сейчас начинается революция в телевидении. Передача сигналов в цифровом коде — метод, который при использовании суперсхем станет дешевым, обеспечит качество изображения, значительно превосходящее нынешнее. Появятся телевизоры, способные хранить понравившиеся передачи в своих запоминающихся устройствах на суперчипах.

Правда, мешает использование чипа в качестве долговременной памяти пока одно «но», которое не всегда удается обойти.

При выключении питания записанная информация пропадает, поэтому на них постоянно надо подавать питание. Но крошки-чипы потребляют не так уж и много, так что в стационарных условиях с этим недостатком можно примириться.

Пожалуй, не найти радиотехнических систем, которых не коснется «чипизация». Радары не столь уж далекого будущего, например, будут состоять лишь из антенны, которая опять же будет исполнена в виде множества интегральных СВЧ-микросхем (антенны такого типа называются фазированными антенными решетками, или сокращенно ФАР) и миниатюрной ЭВМ на суперчипе.

А остановится ли электроника на суперчипах? Какие пути ее развития намечаются уже сейчас, в наше время?

ЭЛЕКТРОНИКА ЧЕТВЕРТОГО ПОКОЛЕНИЯ

Как мы видели, начиная с 1960-х годов, момента старта интегральной электроники, инженеры и технологи словно втянулись в марафонскую гонку: кто быстрее уменьшит в размере транзисторы и плотнее разместит их в одном чипе. Принцип был один: изготовить уже известную схему, только в меньшем масштабе, соответственно уменьшив напряжение питания.

При всей своей прогрессивности и достоинствах сама идея интегральной электроники не несла в себе ничего принципиально нового. Это был все тот же схемотехнический путь, то есть известные схемы, которые работали на дискретных полупроводниках, воспроизводились на кристалле кремния. Конечно, не обошлось и без взаимного влияния.

Само развитие интегральной технологии открывало новые возможности, рождались новые типы транзисторов, что, безусловно, отразилось и на принципах построения схем. Но все равно это путь безудержного роста числа элементов в микросхеме по мере усложнения выполняемых ею функций.

И вот виден финиш марафона — известны те пределы, до которых может быть уменьшен транзистор.

Хотя, чтобы дойти до финиша, надо преодолеть еще много преград. Но специалисты сходятся во мнении, что работать с линией тоньше, чем 0,1 микрометра, видимо, нет смысла. При таких размерах знакомые материалы ведут себя странно. Например, тончайшие полоски алюминия, которые соединяют транзисторы, извиваются как змеи, когда по ним проходят электроны. В этом тонком мире действуют уже и другие законы, и вполне вероятно, что там нас ждут неожиданные открытия.

Кроме того, не только физика накладывает ограничения, но и экономика. Возможно, что еще раньше, чем будет достигнут физический предел малости транзистора, наступит экономический предел. В последние два десятка лет стоимость чипов неуклонно снижается. При переходе на субмикронные размеры элементов микросхемы изменятся и методы изготовления чипов и тенденция снижения их стоимости может обратиться вспять. Сверхмалые и сверхсложные чипы просто невыгодно будет производить. Как говорят: «Овчинка выделки не стоит», И наука ищет выход из ожидаемого, но еще не достигнутого тупика…

А что если отказаться от привычных электрических схем? Что если для обработки информации использовать непосредственно какие-либо явления в разных средствах — твердых, жидких, плазменных, полупроводниковых, магнитных, биологических… Функцию сложной схемы их транзисторов, диодов, резисторов и других элементов пусть выполняет непосредственно какой-либо физический процесс.

Такой принципиально новый подход получил название функциональной электроники. Понятие емкое, обширное. В нем множество направлений, каждое из которых заслуживает отдельной популярной книги. Здесь и оптоэлектроника, и магнитоэлектроника, и акустоэлектроника, и криогенная электроника, и биоэлектроника…

Особенно часто сейчас в газетах пишут о биоэлектронике. Вероятно, из-за экзотики. Еще бы, биологические системы — своего рода рекордсмены. Диву даешься и отказываешься верить, когда читаешь, что слуховой орган кузнечика чувствует колебания, амплитуда которых составляет половину диаметра атома водорода! Чувствительность слуха кузнечика столь высока, что, находясь, скажем в Подмосковье, он может воспринимать самые малые землетрясения, происходящие на Камчатке. Неудивительно, что творения живой природы, своего рода биологические «патенты», — постоянный источник новых идей для инженеров, конструкторов, ученых.

Отчасти особое внимание к биоэлектронике связано с такими заманчивыми идеями, как, например, имплантация в мозг биоэлектронного устройства для восстановления зрения у слепых или создания самостоятельно собирающихся биологических вычислительных машин. Представьте себе ЭВМ, синтезированную с помощью бактерий! Вполне возможно, что лет через 15— 20 такая ЭВМ перейдет из мира фантастики в мир реальный. Уже многие научные коллективы в различных странах работают в этом направлении.

Одним из кирпичиков биологических ЭВМ может стать молекула белка с «памятью», то есть обладающая способностью находиться в одном из двух состояний, как и транзистор.

С переходом от кремниевых микросхем к «молекулярной электронике» на органических материалах, по-видимому, можно будет добиться плотности записи информации до одного миллиарда миллиардов (1018) бит в одном кубическом сантиметре материала! Для сравнения отметим, что в человеческом мозге (его объем составляет 750 кубических сантиметров) можно записать информацию, эквивалентную одной тысяче миллиардов (1012) бит (текст примерно нескольких сотен книг), а в одном кубическом сантиметре генетического материала «спрессовано» две тысячи миллиард миллиардов (2∙1021) бит информации.

Некоторые результаты уже получены. Например, в области активных биологических пленок. Их можно использовать в качестве оптических запоминающих устройств ЭВМ.

В институте биофизики АН СССР было обнаружено, что обезвоженный белок бактериородопсин может «останавливаться» на определенной стадии своего фотохимического цикла, или, попросту говоря, фиксировать записанное на нем изображение.

Бактериородопсин относится к так называемым фитопигментам, которые вступают во взаимодействие со светом. Особое место среди них занимает родопсин — светочувствительное вещество, входящее в состав клеток сетчатки глаза человека и животных. Поглощая квант света, родопсин меняет свою окраску. Он содержится, например, в солелюбивых пурпурных бактериях. Их также называют «зрячими» за способность преобразовывать энергию света в электрохимическую энергию.

Удивительное превращение происходит с помощью родопсина, и в этом варианте он называется бактериородопсином. Светочувствительные молекулы именуют также хромофорами.

Первая пленка на основе бактериородопсина создана в 1978 году. С помощью лазера на нее записывают и с нее считывают информацию. Теоретически можно получить большую плотность записи: 1014 бит на один кубический сантиметр, ведь цвет меняет единичная молекула, а значит, каждая молекула может хранить информацию.

Создать молекулярный электронный переключатель — проблема сложная и пока еще не воплощенная в практическое устройство. Нужно, чтобы молекула могла изменять свое строение (например, конфигурацию электронных оболочек) и возвращаться в исходное состояние вполне определенным и контролируемым образом.

1 ... 32 33 34 35 36 37 38 39 40 ... 74 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название