ПОИСКИ ИСТИНЫ
ПОИСКИ ИСТИНЫ читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Нетрудно их все построить нз троек и- и d-кварков: (ddd)=del^-, (ddu)=del^0, (duu)=del^+; (uuu)=del^{++}. Это дельта-барионы с зарядами - 1, 0, 1, 2. Мы перебрали все возможности, следовательно, других дельта-барионов нет. Например, del^{-} не существует. Частицу с двойным отрицательным зарядом можно построить только из антикварков: (uuu)= del^{-}.
Обратим особое внимание на дельта плюс-плюс ба-рион, который, как мы только что видели, состоит из тройки u-кварков. (Только тогда полный заряд будет 2(3 x 2/3 = 2).)
Но для того чтобы спин дельта равнялся 3/2, нужно, чтобы проекции спинов всех трех и были одинаковы и равны 1/2.
Возникает противоречие с принципом Паули! Ведь согласно этому принципу частицы с полуцелым спином не могут находиться в одном и том же состоянии. Чтобы избежать противоречия, можно было бы попытаться по-разному распределить эти три кварка в пространстве внутри дельта-бариона. Но при таком неравномерном распределении возрастает энергия, а следовательно, и масса дельта-бариона. Вместо наблюдаемой массы (примерно полторы нуклонных) мы получили бы значительно большую. Было много теоретических попыток обойти принцип Паули, но все они потерпели неудачу. Оказалось, что единственная возможность - предположить, что каждый кварк, помимо спина и заряда, имеет еще одну характеристику, которая была условно названа «цвет». Каждый кварк может иметь один из трех цветов, скажем красный, желтый, синий. Противоречие с принципом Паули снимается: u-кварки в дельта-барио-не разноцветные, а разным частицам не запрещается находиться в одном состоянии.
Только не надо понимать цвета кварков буквально, это лишь красивое условное обозначение, можно было бы просто пронумеровать их: u_1,u_2,u_3.
Кварки не могут жить друг без друга
Многочисленные экспериментальные и теоретические исследования подтвердили дробные заряды и трехцвет-ность кварков. Кварки стали таким же достоверным объектом физики, как протон или электрон. И вместе с тем, несмотря на многие попытки, не удалось найти экспериментально свободные частицы с дробным зарядом. Кварки не вылетают из адронов даже при энергичных столкновениях. Хочешь не хочешь, невылетание кварков приходится возвести в ранг закона природы. В изолированном состоянии могут находиться только «белые» частицы, адроны и лептоны (электрон, мюон, нейтрино); цветные же частицы - кварки - можно наблюдать только внутри адронов. Их нельзя удалить далеко друг от друга. При попытке их раздвижения они превращаются в белые частицы. Если при столкновении, скажем, электронов с позитронами при больших энергиях (например, в ускорителе на встречных пучках) рождается пара кварк - антнкварк, то она немедленно рождает другие цветные пары, и все они группируются в белые комбинации - барионы и мезоны. Чуть позже мы определим слова «белая частица» более точно.
На первый взгляд невылетание кварков не такое уж странное свойство. Нейтрон живет в ядрах неограниченно долго, а в свободном состоянии распадается за пятнадцать минут. Конечно, это громадное время для ядерной частицы, но, например, Д-резонанс распадается за такое малое время, что его невозможно увидеть в свободном состоянии и он может наблюдаться только по его влиянию на пион-нуклонное рассеяние. Кварки и антикварки при раздвижении так быстро превращаются в белые частицы, что далеко друг от друга их нельзя обнаружить.
Необычность этого физического объекта в том, что кварки не живут друг без друга. До того как кварк и антикварк превратятся в белые частицы, они скреплены друг с другом силовыми взаимодействиями, на какое бы расстояние они ни раздвигались. В электродинамике два противоположных заряда тоже притягиваются друг к другу, но сила этого притяжения убывает как квадрат расстояния. Поэтому при рождении пары электрон - позитрон эти частицы можно считать свободными, как только они хотя бы немного раздвинутся так, чтобы потенциальная энергия стала меньше кинетической. В случае пары кварк - антикварк такой момент никогда не наступает - потенциальная энергия их взаимодействия растет с расстоянием!
Это объясняется свойствами того поля, которое скрепляет кварки: оно не убывает с расстоянием, как электрическое.
Когда рождается пара кварк - антикварк, они сначала разлетаются. Их кинетическая энергия превращается в потенциальную энергию их притяжения, как у двух разлетающихся шаров, соединенных пружиной. Но при большой потенциальной энергии система делается неустойчивой, пружина рвется, система превращается в два летящих в разные стороны снопа белых частиц.
Были обнаружены и другие типы, или, как принято называть, «ароматы» кварков - «очарованный» и «красивый».
Теория предсказывает еще один аромат - «высший». Этот кварк пока не подтвержден опытом. Как и u-, d-, s-кварки, эти кварки обозначаются с, b, t - по начальным буквам соответствующих английских слов (charm, beauty, top).
Итак, есть кварки и антикварки шести ароматов - и, d, s, с, b, t, и каждый из кварков имеет три цвета. Общее число кварков 6x2x3 = 36 (вместе с антикварками).
Будем надеяться, что этим исчерпывается изобретательность природы и больше кварков не обнаружится.
Поле, склеивающее кварки
Как ни важно знать симметрии, они не исчерпывают всех свойств физических объектов. Нужно еще знать, как взаимодействуют и движутся поля и частицы.
Соображения симметрии позволили нам найти, из каких кварков составлены адроны. Но гораздо сложнее понять, что удерживает и как движутся кварки внутри адронов. Электрон в ядре атома водорода удерживается возле протона электрическими силами. Аналогично этому необходимо предположить, что есть особое поле, которое не дает кваркам разбегаться. Поле, склеивающее кварки, было названо «глюонным», от английского слова «glue» - клей. Так же как и для электромагнитного поля, применение квантовой механики к глюонному полю приводит к скачкообразному изменению энергии. Энергия поля изменяется скачками величины E=h omega(/lambda), где mu - есть частота поля с длиной волны X. Порция энергии глюонного поля называется «глюоном», аналогично тому, как порция энергии электромагнитного поля называется «квантом» или «фотоном».
Квантовая электродинамика оказалась замечательной теорией: ее предсказания выполняются с колоссальной точностью. Кроме того, она обладает калибровочной симметрией. Физики-теоретики пришли к заключению, что калибровочная симметрия - почти неотъемлемое качество физической теории. Поэтому уравнения глюонного поля следует искать по образу и подобию уравнений электродинамики. Из калибровочной симметрии следует, в частности, что глюон, как и фотон, - безмассовая частица.
Но есть одно важное отличие: кварки, взаимодействуя с глюонным полем, могут изменять свой цвет, тогда как электрон не изменяется при взаимодействии с электромагнитным полем. Это делает глюодинамику более сложной, чем электродинамика.
Для каждого изменения цвета кварка нужно вводить свое поле: красно-синее, сине-желтое и так далее. Всего девять вариантов (3x3). В действительности, как мы увидим, нужно ввести не девять, а восемь глюонных полей. Из трех полей - красно-красного, сине-синего, желто-желтого - можно составить одну бесцветную - белую - комбинацию, которую не следует включать в число цветных полей, обеспечивающих взаимодействие кварков. Для того чтобы в этом разобраться, нам придется сделать усилие, - ничего не поделаешь, симметрию не всегда легко увидеть.
Вспомним, что говорилось в первом разделе этой главы о классификации величин, по-разному изменяющихся при операциях симметрии, например при поворотах в пространстве.
По аналогии с пространственной симметрией нам нужно ввести трехмерное цветовое пространство и классифицировать все величины по тому, как они изменяются при поворотах в этом пространстве.
Белые частицы не должны изменять свое состояние, точнее, свою волновую функцию при цветовых поворотах - они скаляры относительно цветовых преобразований. Волновая функция, описывающая состояние кварка, не остается неизменной, она определенным образом изменяется при поворотах в цветном пространстве.