Бегство от удивлений
Бегство от удивлений читать книгу онлайн
Книга рассказывает о рождении и развитии механики как науки, искавшей и ищущей ответы на самые простые и глубокие вопросы об устройстве природы.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Как видите, в старое слово «мир» Минковский вложил оригинальный физический смысл: графическое изображение на диаграмме событий сразу в пространстве и времени. Здесь это объединение пространства и времени чисто формальное, продиктованное требованием удобства и лаконизма. Но зато как велики эти удобства!
Предлагаю вам внимательно разглядеть следующую картинку:
Все события, происшедшие за четверть суток на Октябрьской дороге, нашли здесь точное отображение. Сэкономлена масса бумаги и типографской краски. Каждую мировую линию вы при желании расшифруете словами и цифрами, составив, таким образом, длинные перечни событий.
Есть тут поезда скорые, идущие быстро и почти без остановок; есть почтовый поезд, еле плетущийся, останавливающийся «у каждого куста»; есть товарняки, которые больше стоят, чем едут. Кроме того, есть нечто весьма быстрое — добравшееся из Ленинграда в Москву за час (я думаю, это самолет, летевший вдоль дороги).
На диаграмме хорошо заметен тот факт, что все в мире движется не только в пространстве, но и во времени. Движению только во времени дается выразительная интерпретация: мировая линия становится параллельна оси t. Вон, в середине, какой-то товарняк застрял в Бологом, но мировая линия его тянется вверх. Не сдвигаясь с места, он путешествует в будущее.
Такие же параллельные оси времени мировые линии можно было бы нарисовать и для рельсов, и для шпал, и для каждой станции. Я ограничился тем, что попросил нарисовать их только для Москвы и Ленинграда. Вышли не линии, а столбики — потому что оба города отнюдь не точки, а имеют внушительные размеры. Продвигаясь во времени, длины городов как бы размазываются в полоски.
Есть на последней диаграмме график с подвохом — специально, чтобы вы над ним подумали. Вон он в левом верхнем углу, что-то вроде буквы «М». Если нашли, задержите чтение и попытайтесь сообразить, какими словами, какой последовательностью событий можно его расшифровать. Стоп! Дальше пока не читать!
Думайте...
Кто сам догадался — молодец.
Этот график — не одна мировая линия, а четыре. Каждый прямой отрезок — особый поезд. Но идут они в разных направлениях. Первый слева — к Ленинграду, второй — к Москве, третий — тоже к Ленинграду, четвертый — к Москве. Первый встречается со вторым, второй выходит из одного пункта с третьим одновременно, но в разные стороны, а в конце своего пути встречается с четвертым. Почему такое раздробление? Во исполнение закона причинности. Если бы второй и четвертый поезда шли к Ленинграду, они двигались бы в обратном времени, путешествовали бы в прошлом. И прибыли бы в пункт назначения до ухода из пункта отбытия, что невозможно, ибо принцип причинности нерушим.
Двигаться в мире разрешено только так, чтобы время текло в одну сторону — вперед. По оси расстояний можно кататься туда и обратно — вправо и влево, а по оси времени лишь в будущее, то есть, на нашей диаграмме, вверх. Поэтому каждый прямой отрезок буквы «М» должен проходить снизу вверх.
Подвохи еще не кончились. Вот вопрос: что произошло в точках встреч мировых линий, в вершинах «М»?
Там случились, надо полагать, страшные крушения, или, в лучшем случае, в этих точках поезда были очень быстро расформированы. Так или иначе, но они наверняка исчезли.
Ведь если бы первый поезд просто остановился, встретившись со вторым, то его мировая линия не пропала бы, а потянулась в будущее но прямой, параллельной оси времени. Но линии нет. Значит, сошедшиеся поезда тоже исчезли. Что и требовалось доказать.
Честно говоря, сейчас была предложена довольно трудная для новичка логическая задача. Кто не решил ее, пусть не печалится. Хорошо, если он хоть разобрался в объяснении.
Простенькая фигурка на диаграмме рассказала нам, как видите, весьма поучительную логическую историю. Из нее полезно извлечь мораль: рисуя мировые линии, помните, что у них есть направления — разрешенное и запрещенное законом причинности.
Бездельничая в купе, пассажиры говорят:
До Бологого пять километров.
Остался час до Ленинграда.
В таких сентенциях отсчет времени и расстояний всегда ведется от поезда. Это понятно. Пусть где-то на пути неожиданно лопнул рельс. Машинисту и пассажирам жизненно важно знать, далеко ли и с какой стороны это произошло именно от поезда. Расстояние же лопнувшего рельса от Москвы или Ленинграда для обитателей поезда несущественны.
Поэтому пассажиры и машинист, пользуясь отсчетами «от поезда», склонны неосознанно применять принцип относительности и чувствовать себя неподвижными, а движущейся считать дорогу вместе со всеми станциями, Москвой и Ленинградом. Это им удобно. С этой точки зрения они могут нарисовать диаграмму движения. Как же изменится ее вид?
Да никак не изменится. Только система отсчета из прямоугольной сделается косоугольной. Старая ось времени превратится в мировую линию Москвы. Мировая линия поезда станет новой осью времени t, на которой увеличится масштаб, то есть длина отрезков, изображающих часы или минуты. Ось расстояний останется без перемен. А положение относительно поезда событий (мировых точек) определится по прежним правилам: в пересечении вспомогательных линий, параллельных осям расстояний и времени.
Взгляните:
Здесь мировая точка А — удар молнии в рельс. Как видно из построения, он произошел в 2 часа 35 минут в тридцати километрах перед поездом.
Диаграмма дает возможность пойти навстречу не только обитателям экспресса Москва — Ленинград. Каждый поезд вправе объявить себя неподвижным, и это вполне поддается геометрическому изображению: надо только его мировую линию переименовать в ось времени. Для поездов, выходящих из Москвы (а заодно и для самой Москвы), пусть получится такая картина:
Все оси времени (Ot, Ot’, Ot’’, Ot’’’ и т. д.) тут равноправны, а ось расстояний у них общая.
Различие систем чисто условное — в масштабах времени. Как же находить эти масштабы?
Отметив на одной из осей времени отрезок ОB, соответствующий часу, проводим через точку В линию, параллельную оси расстояний. На всех остальных осях времени она отметит одновременные события, а значит, отсечет отрезки, равные часу.
Эта линия, указывающая масштабы систем отсчета, называется калибровочной.
Вот, пожалуй, и готов пространственно-временной мир Октябрьской железной дороги. Полную его картину (для обоих направлений) вы при желании легко нарисуете сами. В этом мире царит ньютоновское абсолютное пространство (ось расстояний единственная на все поезда), присутствует абсолютное время (любая линия, параллельная оси расстояний, проходит через события, абсолютно одновременные во всех системах отсчета), узаконен галилеевский принцип относительности.Так выглядит диаграмма равномерных прямых движений, которые медленны по сравнению со светом. Мир доэйнштейновский.
Четыре шага
Ну, а какова диаграмма эйнштейновского мира?
Ее построим постепенно, в несколько шагов.
Шаг первый. Рисую оси Москвы. Ускоряю поезда в миллионы раз. Они мчат со скоростями, сравнимыми со скоростью света. Из Москвы в Ленинград попадают за малые доли секунды. Их мировые линии сжались в плотный пучок.