Нейтрино - призрачная частица атома
Нейтрино - призрачная частица атома читать книгу онлайн
В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.
Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Электрический заряд каждого протона равен 4,80298·10 -10электростатических единиц. Внутри ядра два соседних протона фактически соприкасаются друг с другом, и, следовательно, расстояние между их центрами приблизительно равно 10 -13 см.Если подставить эти числа в уравнение Кулона, окажется, что два протона внутри ядра отталкиваются друг от друга с силой около 2,4·10 7 дин.
Можно ли противодействовать столь сильному отталкиванию? В начале 30-х годов было известно только два типа сил: одна возникла в результате электромагнитного взаимодействия (например, отталкивание между двумя протонами), другая — гравитационного взаимодействия [18]. Насколько нам известно, гравитационное взаимодействие всегда приводит к притяжению. Значит, два протона кроме электромагнитного отталкивания испытывают также гравитационное притяжение. Может ли это гравитационное притяжение уравновесить электромагнитное отталкивание?
В 1687 году Ньютон выразил закон всемирного тяготения в такой же форме, в какой Кулон выразил свой закон сто лет спустя. Согласно закону Ньютона, два тела притягиваются друг к другу с силой, определяемой из следующего равенства: F = G (m 1m 2)/ d 2,
где т 1и m 2— массы тел, a d— расстояние между их центрами, см.Величина Gназывается гравитационной постоянной.
Ньютон не знал величины G.Она была определена только в 1798 году (семьдесят лет спустя после смерти Ньютона) английским физиком Генри Кавендишем. Наиболее точное значение Gв системе СГС, полученное в настоящее время, равно 6,670 · 10 -8 дин·см 2/г 2.
Масса каждого протона чрезвычайно мала, всего 1,67252·10 -24 г.Расстояние между двумя протонами внутри ядра по-прежнему равно 10 -13 см.Подставив все эти величины в правую часть уравнения Ньютона, мы сможем определить величину F,т. е. силу гравитационного притяжения между двумя протонами в динах. Она оказывается очень мала — всего 1,86·10 -29 дин.
Другими словами, электромагнитное взаимодействие, стремящееся оттолкнуть протоны друг от друга, в сотни тысяч триллионов раз больше гравитационного взаимодействия, которое стремится их сблизить. Поэтому не удивительно, что при рассмотрении поведения субатомных частиц гравитационным взаимодействием пренебрегают.
Мы сами, однако, в обычной жизни сильно ощущаем действие гравитации. Объясняется это тем, что имеется только гравитационное притяжение, а гравитационного отталкивания нет. В случае электромагнитных взаимодействий наряду с двумя типами электрических зарядов существуют притяжение и отталкивание, которые могут нейтрализовать друг друга. Обычно суммарный электрический заряд любого значительного по размерам тела близок к нулю. Например, суммарные электрические заряды Земли и Солнца равны нулю, и электромагнитное взаимодействие между ними отсутствует.
Гравитационное взаимодействие, наоборот, с увеличением размеров тела становится более заметным. При увеличении массы слабые притяжения накапливаются без нейтрализации. Для тел с размерами планет и звезд гравитационное притяжение становится огромным. Поэтому, постоянно ощущая земное притяжение, мы неправильно думаем, что гравитационное взаимодействие сильное, в действительности же оно невероятно слабое.
Притяжение внутри ядра
Если при рассмотрении атомных ядер пренебречь гравитационными взаимодействиями и учитывать только электромагнитные, трудно объяснить существование ядра. Частицы, из которых оно состоит, не могли бы соединиться из-за колоссальных сил отталкивания между протонами; но даже если бы они каким-то образом все же соединились, они немедленно разлетелись бы, как при взрыве огромной силы. При этих условиях существовали бы только ядра водорода, состоящие из одного протона (или в некоторых случаях из протона и нейтрона).
И все же образовались, существуют и остаются стабильными все типы сложных ядер. Ядро урана-238 содержит 92 протона, находящихся в чрезвычайно тесном контакте друг с другом, тем не менее распадается оно чрезвычайно медленно, а ядро свинца с 82 протонами, так сказать, устойчиво, вечно.
Если факты противоречат теории, ее следует изменить. Если протоны связаны внутри ядра, должно быть притяжение, которое удерживает их вместе; притяжение, которое сильнее электромагнитного отталкивания. Следовательно, существуют ядерные взаимодействия,которые создают необходимое притяжение. Можно даже предсказать некоторые свойства ядерного взаимодействия. Во-первых, как отмечалось, оно должно быть сильнее электромагнитного и должно создавать притяжение между двумя протонами (а также между протоном и нейтроном и между двумя нейтронами). Во-вторых, ядерное взаимодействие должно действовать только на очень коротких расстояниях.
Электромагнитное и гравитационное взаимодействие обнаруживаются на значительном расстоянии. Каждая единица электрического заряда является как бы центров электромагнитного поля,которое простирается во всем направлениях и постепенно уменьшается с расстоянием. Аналогично каждая единица массы является центром гравитационного поля.
Напряженность каждого из этих полей обратно пропорциональна квадрату расстояния между взаимодействующими телами. Если, например, расстояние между протонами увеличится в два раза, гравитационное притяжение и электромагнитное отталкивание уменьшатся в четыре раза. Несмотря на такое ослабление, оба поля действуют на больших расстояниях. Например, Земля находится под действием гравитации Солнца, несмотря на то что их разделяет расстояние в 150 000 000 км.Значительно более удаленная планета Плутон также удерживается Солнцем, а Солнце, в свою очередь, удерживается на огромной орбите вокруг центра Галактики. Следовательно, электромагнитное и гравитационное поля вполне можно назвать «дальнодействующими».
Ядерные взаимодействия, рождающиеся в ядерном поле,изменяются однако не обратно пропорционально квадрату расстояния. Под действием ядерного поля два протона притягиваются друг к другу с большой силой, пока фактически не соприкоснутся. Но на расстояниях, превышающих размеры атомного ядра, притяжение, вызванное ядерным полем, слабее отталкивания за счет электромагнитного поля; поэтому везде, за исключением внутренних областей ядра, два протона отталкиваются.
Действительно, если атомное ядро имеет необыкновенно большие размеры, ядерное притяжение не в состоянии скомпенсировать электромагнитное отталкивание между протонами по всему объему ядра, и оно стремится развалиться. Именно такие ядра со сложной структурой испытывают α-распад, а иногда подвергаются даже более радикальному распаду, который мы называем «делением». Ядерное поле убывает обратно пропорционально не квадрату, а приблизительно седьмой степени расстояния. Если расстояние между двумя протонами увеличивается вдвое, притяжение между ними уменьшается не в 4 раза, а в 128 раз. Это означает, что поле внутри ядра в сотни раз сильнее электромагнитного, а вне ядра им можно пренебречь.
В 1932 году Гейзенберг (впервые предложивший протон-нейтронную модель ядра) разработал теорию, согласно которой взаимодействия полей осуществляются посредством обмена частицами. Например, притяжение и отталкивание в электромагнитном поле происходят в результате обмена фотонами между телами, испытывающими притяжение или отталкивание, иначе говоря, с помощью так называемых обменных сил.Если соображения Гейзенберга применимы и к ядерному полю, протоны и нейтроны ядра должны обмениваться некоторой частицей, чтобы между ними возникло необходимое притяжение, удерживающее их вместе.
Что это за частица? Почему она создает короткодействующую силу? И снова ответ (как и многие другие ответы в ядерной физике) возник при рассмотрении законов сохранения, но с совершенно новой точки зрения.