Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт.
Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт. читать книгу онлайн
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Другое решение, столь же отчаянное, в 1930 году предложил Паули. В знаменитом письме 4 декабря, направленном участникам конгресса о радиоактивности, Паули допустил, что с p-излучением ядро испускает нейтральную неизвестную до тех пор частицу, энергия которой соответствует энергии, недостающей электрону. Так, при каждом радиоактивном излучении ядро всегда испускает одно и то же количество энергии, и она распределяется переменным образом между электроном и нейтральной частицей. Эту частицу позже назвали «нейтрино», и хотя с фактом ее существования очень быстро согласились, саму ее обнаружили экспериментально только в 1956 году.
Весной 1932 года в Копенгаген хлынул непрерывный поток исследователей из Кавендишской лаборатории. В феврале того года Чедвик объявил о существовании нейтральных частиц, нейтронов, не имеющих электрического заряда, с массой, подобной массе протонов, присутствующих во всех атомных ядрах. Существование частиц не стало неожиданностью. Еще в 1920 году ввиду необходимости лучше понять состав атомных ядер Резерфорд выдвинул предположение о тесно связанных соединениях из протона и электрона, которые он назвал «нейтронами». Это предположение основывалось на существовании другой чрезвычайно стабильной структуры — α-частиц, которые должны были объяснить ядерную стабильность. Однако после некоторых безрезультатных попыток Резерфорд оставил поиск нейтронов.
Различные команды ученых годами исследовали свойства радиоактивности полония-бериллия. При облучении атомов бериллия α-частицами, происходящими из радиоактивного полония, получались изотоп углерода и нейтральное излучение с высокой проникающей способностью по формуле:
4α2 + 9Ве4 →13С6 + γ,
где у представляет собой нейтральное излучение, которое изначально истолковали как электромагнитное. Джеймс Чедвик изучал взаимодействие этого нейтрального излучения с различными элементами. Сначала он заметил, что нейтральное излучение полония-бериллия приводит в движение атомы водорода, но то же самое происходило и с атомами азота, которые в 14 раз тяжелее первых. Это было невозможно при электромагнитном излучении. Чедвик говорил: «Эти результаты, а также другие, которые я получил в ходе работы, сложно объяснить, если предположить, что излучение бериллия является квантовым. Сложности исчезнут, если предположить, что излучение вызвано частицами массы 1 и заряда 0, или нейтронами». Данную статью («Существование нейтрона», опубликована в 1932 году в журнале Nature) принято считать моментом рождения новой частицы, нейтрона. Происхождение этих нейтронов задано реакцией:
4α2 + 9Ве4 → 12С6 + 1n0.
где n обозначает нейтроны.
Это предположение исказило изначальное толкование открытия Чедвика. Одно дело экспериментально подтвердить, что существует нейтральное излучение (состоящее из частицы массы, схожей с массой протона), и совершенно другое — истолковать эти частицы как элементарные, основополагающие. Последний шаг был сделан не сразу: на то, чтобы весь мир признал основополагающий характер нейтронов, понадобилось почти два года. Между тем многие предпочитали думать, что нейтрон, как и а-частицы, — это соединение протона с электроном.
Среди первых, кто принял это радикальное толкование, были Паули, Гейзенберг и Бор. Последний организовал в Копенгагене в апреле 1932 года семинар по изучению недавнего открытия и следствий из него для структуры атомного ядра. Чтобы представить себе тот энтузиазм, с которым Бор воспринял новость о существовании нейтронов, обратимся к фрагменту письма, отправленного им Резерфорду после апрельского семинара:
«Прогресс в исследовании ядерной структуры настолько скоростной, что задаешься вопросом, какие новости ждут нас завтра. [...] Пожалуй, я никогда еще так не хотел быть ближе к вам и к Кавендишской лаборатории».
Если считать нейтрон элементарной частицей, а не соединением протона с электроном, то образ атомного ядра меняется радикально. Атом обрел иную структуру (см. рисунок 3): ядро, образованное протонами и нейтронами (частицами схожей массы, хотя первая обладает электрическим зарядом, а вторая нет), и несколько электронов вокруг ядра, число которых равно числу ядерных протонов.
РИС.З
У этой модели атома было много преимуществ относительно предыдущей, но был один очевидный недостаток. Если ядро состояло только из протонов и нейтронов, откуда испускались электроны β-радиоактивности? Чтобы ответить на этот вопрос, требовалось ввести новую частицу, которая была открыта в 1932 году, — позитрон.
С 1910 по 1912 год немецкие ученые Альберт Гокель (1860— 1927), Вернер Кольхёрстер (1887-1946) и австриец Виктор Франц Гесс (1883-1964) изучали тип излучения (неизвестного до той поры), происходящего из атмосферы. Поднявшись на аэростатах, исследователи заметили, что количество обнаруженного в атмосфере электрического заряда с высотой увеличивается. Это указывало на то, что излучение происходит из верхних слоев атмосферы или (почему бы и нет?) из космоса. Поэтому его назвали Hohenstrahlen, или Ultrastrahlen, дословно «излучения высот», или «излучения извне».
В 1925 году американец Роберт Эндрюс Милликен (1868- 1953) назвал это «космическими лучами». Неизвестное происхождение данного типа излучения окружало его мистическим ореолом, перед которым Милликен не мог устоять. Изучение космических лучей было частью большого проекта, который задумал американский физик. После открытия радиоактивности в конце XIX века ученые знали, что имеют дело с процессами трансмутации материи: одни атомы превращаются в другие с испусканием положительного (а), отрицательного (Р) и нейтрального (у) излучения. С тех пор перед воображением ученых открывались завораживающие возможности: использовать атомную энергию, синтезировать атомы в лаборатории, полностью постичь структуру атома... Следующие слова Милликена показывают нам, что его заинтересованность космосом связана с вопросами состава материи:
«У радия и урана мы видим только распад [атомов]. Но где-то почти наверняка эти элементы постоянно как-то образуются. Возможно, они сейчас собираются в звездных лабораториях. [...] Сможем ли мы когда-нибудь контролировать этот процесс? [...] Если мы добьемся подобного, это будет новый мир для человека!»
Для Милликена исследование космических лучей было способом изучить процессы, которые происходят на звездах — «фабриках Бога», как он их называл. Здесь можно отметить еще один интересный элемент его исследования: у Милликена имелась теория о происхождении атмосферного излучения до проведения экспериментальной работы. В то время как в Европе обсуждали не только происхождение такого излучения, но даже сам факт его существования, Милликен считал очевидным внеземное происхождение излучения в атмосфере. Он не мог доказать, что космические лучи на самом деле космические, поскольку не мог выйти за пределы атмосферы, однако, окрестив излучение так, уже навязывал свое видение этого явления. Милликен считал, что в процессе образования различных элементов из «доменных печей» звезд испускаются разные типы излучения как отходы этих процессов. Следовательно, изучение даст нам информацию об образовании атомов. Космические лучи — это «первые крики новорожденных атомов».
Проект космических лучей дал неожиданный результат. Карл Дейвид Андерсон (1905-1991), молодой американский исследователь, работавший под руководством Милликена, сфотографировал траектории космических лучей при их прохождении через туманную камеру (аппарат, который выявляет частицы ионизирующего излучения). Чтобы определить заряд излучения — как космического, так и радиоактивного происхождения, — к туманной камере применяется магнитное поле, которое искривляет траектории частиц в том или ином направлении, в зависимости от их заряда. Летом 1932 года Андерсон столкнулся со странным типом излучения. Судя по массе, частицы, которые он обнаружил, были электронами, но заряд их был положительным, так что они скорее походили на протоны. Было и третье толкование, которому Милликен противился, но Андерсон в итоге решился опубликовать его самостоятельно: траектории соответствовали положительным электронам (получившим затем название позитронов). Так что пришлось добавить новую элементарную частицу к уже существующим — протону, электрону и нейтрону.