ПОИСКИ ИСТИНЫ
ПОИСКИ ИСТИНЫ читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
В заключение попробуем применить ко всему сказанному идею предельного упрощения.
Движущей силой в науке должно быть не стремление совершить переворот, добиться успеха, а любознательность, способность удивляться и радоваться каждой малой удаче и, главное, ощущение красоты науки. Необходимо воспитать в себе безупречную добросовестность и способность доводить любой самый сложный вопрос до предельной простоты и ясности. Найти выход из многих психологических противоречий. Руководствоваться интуицией, но не доверять ей. Знать все трудности, но уметь на время от них отвлекаться. Верить в результат и в то же время упорно искать его опровержение. Найти свой стиль работы, но менять его по мере накопления опыта и с каждым большим открытием. Короче, нужно все понять «до оснований, до корней, до сердцевины», как сказано у Пастернака.
Эти стихи начинаются словами: «Во всем мне хочется дойти до самой сути. В работе, в поисках пути, в сердечной смуте…»
Пусть эти строки послужат напутствием тем, кто решился посвятить себя науке.
О КРАСОТЕ НАУКИ
Неудивительно, что истинное прекрасно, ведь истина отражает красоту и гармонию Вселенной. Но более того - красивое часто оказывается истинным. Когда у математика или физика возникает изящное построение, оно почти всегда либо решает поставленную задачу, либо будет использовано для каких-то других, будущих задач. Мы увидим это на примере одного из главных направлений современной физики - поисков симметрии пространства и внутренней симметрии элементарных частиц. Но прежде нужно понять, что такое красота в науке и как поиски красоты приближают нас к познанию природы.
ПОИСКИ КРАСОТЫ
Чему бы жизнь нас ни учила, Но сердце верит в чудеса: Есть нескудеющая сила, Есть и нетленная краса.
Ф. Тютчев
Можно ли ограничиться чисто внешней красотой или за ней следует искать более глубокую, несущую некий высший смысл? В чем красота логических построений? Главные направления физики XX века - поиски симметрии и единства картины мира.
Алгебра и гармония
Что такое красота? Часто мы называем красивым то, что соответствует нормам и идеалам нашего времени. Идеалы и моды у каждой эпохи свои. Но есть красота нетленная, непреходящая, к которой человечество обязательно возвращается. Нас никогда не перестанут радо-
вать пропорции Парфенона, гармоничность и единство с природой церкви Покрова на Нерли… Я огорчаюсь всякий раз, когда слышу фразу: «На вкус и цвет товарищей нет…» Как раз обратное - удивляешься тому, как много людей одинаково оценивают красоту. И что примечательно: те, кто не входит в это большинство, обычно не единодушны в своих мнениях. В этом доказательство объективности понятия прекрасного.
Можно ли ограничиться внешним восприятием красоты? Можно ли оценить красоту, измеряя линейкой соотношения размеров? За чисто внешней красотой лица мы ищем красоту духовную, благородство, напряжение мысли.
И в конкретном и в абстрактном искусстве значительность произведения определяется тем, насколько оно выходит за рамки внешнего воздействия, насколько глубоко взаимодействуют и соотносятся части целого.
Мой покойный друг скульптор Алексей Зеленский говорил: «Я сажусь в метро и смотрю на ноги сидящих. Потом поднимаю глаза и вижу: а голова-то ведь от этих ног! Вот когда поймешь, почему при этой голове должны быть именно такие ноги, можно делать портрет». Валерий Брюсов писал: «Есть тонкие, властительные связи меж контуром и запахом цветка». Это взаимодействие частей иногда радует взор, как в «Поцелуе» Родена, картинах Рафаэля или Ватто, но может быть напряженным и трагическим, как в «Рабах» Микеланджело, у Эль Греко или Гойи.
Вот строки Осипа Мандельштама:
…Но чем внимательней, твердыня Notre-Dame, Я изучал твои чудовищные ребра, Тем чаще думал я: «Из тяжести недоброй И я когда-нибудь прекрасное создам…»
По словарю Ларусса, красивое - это то, что «радует глаз или разум».
Мы говорим о красоте музыки Моцарта, пушкинских стихов, но что можно сказать о красоте науки, мысленных построений, которых не нарисовать на бумаге, не высечь из камня, не переложить на музыку?
Крдсота науки, как и искусства, определяется ощущением соразмерности и взаимосвязанности частей, образующих целое, и отражает гармонию окружающего мира.
Вот что говорит Анри Пуанкаре в книге «Наука и метод»: «Если бы природа не была прекрасна, она не стоила бы того, чтобы ее знать; жизнь не стоила бы Toго, чтобы ее переживать. Я здесь говорю, конечно, не о той красоте, которая бросается в глаза (…), я имею в виду ту более глубокую красоту, которая открывается в гармонии частей, которая постигается только разумом. Это она создает почву, создает скелет для игры видимых красок, ласкающих наши чувства, и без этой поддержки красота мимолетных впечатлений была бы несовершенна, как все неотчетливое и преходящее. Напротив, красота интеллектуальная дает удовлетворение сама по себе».
Красота логических построений
Красота, о которой говорит Пуанкаре, - это не только отражение гармонии материального мира, это и красота логических построений. Логическое - один из объектов познания, его объективность доказывается общеобязательностью логических заключений. Логическая красота так же объективна, как и красота физических законов. Мы часто ощущаем изящество теории и в том случае, когда предсказания ее не подтвердились экспериментом. Под «изяществом» понимается остроумие аргументации, установление неожиданных связей, богатство и значительность заключений при минимальном числе правдоподобных предположений… Словом, то, что отражает красоту законов разума.
Красота логических построений в самом чистом виде проявляется в математике. Так, математика изучает все возможные геометрии пространства с произвольным или даже бесконечным числом измерений. Математическая ценность и красота этих результатов не зависят от того, какая именно из геометрий осуществляется в нашем трехмерном мире.
Один из удивительных примеров математической красоты - это «алгебра высказываний», или «алгебра логики», позволившая анализировать законы и возможности логических заключений.
Еще у Аристотеля была идея составлять сложные рассуждения, последовательно применяя более простые элементы, независимые от природы объектов, о которых идет речь. Дальнейшее развитие эта идея получила у Лейбница - он пытался придать аристотелевой логике алгебраическую форму. Но только в середине прошлого века идея превратилась в законченную теорию (см.: Бурбаки Н. Очерки по истории математики. М., 1963).
Обычная алгебра, которую учат в школе, не единственно возможная. Если вы увидите книгу под названием «Алгебры Ли», не думайте, что множественное число - это опечатка.
Можно определить понятия сложения и умножения объектов и при этом отказаться от аксиом обычной алгебры, например от предположения, что результат умножения не зависит от порядка сомножителей. Получится другая алгебра. Причем анализ соотношений в ней целиком определяется принятыми аксиомами о свойствах операций и не зависит от ее конкретного воплощения. «Действенность анализа зависит не от истолкования символов, а исключительно от законов их комбинации» - так выразил суть и силу математической абстракции Джордж Буль, автор книги «Исследование законов мысли».
Буль построил алгебру на такой системе аксиом (или, как говорят математики, «исследовал структуру»), которая описывает свойства высказываний. Одновременно эта же структура представляет и алгебру релейных электрических цепей, без которой невозможно построение сколько-нибудь сложной ЭВМ. Только на основе подобной математической, или символической, логики возможно научное обсуждение таких волнующих человечество проблем, как выяснение мыслительных возможностей ЭВМ и создание искусственного интеллекта.