Капля
Капля читать книгу онлайн
Книга состоит из отдельных очерков о физических законах, управляющих поведением капли, об ученых, которым капля помогла решить ряд сложных и важных задач в различных областях науки.
Книга иллюстрирована кадрами скоростной киносъемки и будет интересна самому широкому кругу читателей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Вначале попытаемся понять, почему на поверхности глицерина упавшая капля не вызывает всплеска, как это наблюдается на воде. Здесь удобно обратиться к образу колеблющегося маятника, чечевица которого погружена в жидкость — вначале в воду, а затем в глицерин. Аналогия с маятником вполне законна. Капля, упавшая на поверхность жидкости, прогибает ее, выводит из равновесия. Такое состояние поверхности жидкости подобно состоянию маятника, который отклонен от вертикали. Пусть в этом положении и чечевица маятника и поверхность жидкости предоставлены самим себе. Если чечевица погружена в жидкость малой вязкости, маятник совершает несколько колебаний около вертикали. Амплитуда этих колебаний будет уменьшаться, и вскоре маятник остановится.
Колебаний будет тем меньше, чем больше вязкость жидкости, в которой движется чечевица, так как ее движение сопровождается потерей части энергии на преодоление вязкого сопротивления жидкости. В случае очень вязкой жидкости маятник будет медленно приближаться к вертикали и, подойдя к ней, остановится.
В нашей аналогии поверхность жидкости подобна чечевице маятника. Если жидкость обладает малой вязкостью, ее возмущенная поверхность, прежде чем успокоиться, совершит несколько колебаний около горизонта. Именно это мы и наблюдали в опытах с водой, когда воронка и гвоздик чередовались 2—3 раза. А воронка, возникшая под давлением упавшей капли, в вязком глицерине медленно сглаживается, и поверхность, приблизившись к горизонтали, успокаивается. Запасенной энергии хватает лишь на преодоление сопротивления вязкого глицерина.
В случае глицериновых капелей цилиндрическая перемычка с наметившимися перетяжками, остающаяся после отрыва капли, не разбивается на капельки-сателлиты по этой же причине — из-за большой вязкости глицерина.
Значит, у поэтов глицеринового мира дождь на реке не смог бы вызвать образ водяной лилии или серебряного гвоздика с алмазной шляпкой. Вот что было бы, если бы...
Опыт Рэлея—Френкеля
Сущность опыта заключается в наблюдении за поведением струи жидкости в электрическом токе. Со струей происходит много любопытных явлений; она разбивается на капли, затем капли сливаются, а в иных условиях разлетаются серебристым веером во все стороны. Но вначале немного об истории опыта.
В 1879 г. английский физик Рэлей, второй директор знаменитой Кавендишской лаборатории, заметил, что струя водяного фонтанчика, помещенная в электрическое поле, параллельное струе, менее охотно дробится на капли, чем в отсутствие поля. Он описал это явление, но подробно исследовать не стал. Вслед за ним многие повторили опыт, заметив при этом, что Рэлей увидел не все. Струя в поле действительно менее охотно дробится на капли, однако, если поле увеличить, можно добиться эффекта диаметрально противоположного — дробление становится бо лее активным, на конце струи возникает множество мелких капель.
Капля на конце струи, колеблющаяся в электрическом поле
Через 70 лет, в 1949 г., опыт Рэлея повторил Я. И. Френкель со своими сотрудниками. Повторил с различными жидкостями, меняя величину поля, напор струи. Он высказал некоторые соображения о причинах наблюдаемых явлений, затем экспериментально проверил справедливость догадок и предложил приближенную теорию, которая удовлетворительно объяснила факты. Вот, пожалуй, и вся история. Мы в лаборатории повторили опыты Френкеля и сняли об этом кинофильм, из которого здесь приведены две кинограммы.
Готовясь к опыту, собрали простое устройство: на высокой подставке располагался сосуд с водой, с ним была соединена резиновая трубка, которая оканчивалась стеклянным оттянутым наконечником. Из наконечника вертикально била струя воды, проходя через отверстие в алюминиевом диске, параллельно которому на расстоянии около полуметра располагался второй алюминиевый диск; гибкими проволочками диски соединялись с источником напряжения. Кроме того, к алю миниевым дискам подключали измеритель напряжения. В качестве источника использовали электростатическую машину (какая есть в любом школьном кабинете физики).
Опыт ставился так. Включалась струя. Ее напор регулировался таким образом, чтобы вершина струи не достигала верхнего диска. Начинали вращать ручку электростатической машины, следили за показаниями вольтметра и кинокамерой снимали все то, что происходило со струей в электрическом поле.
Первая кинограмма. На приводимых кадрах последовательно отражено событие, которое происходит на конце струи, когда приложено небольшое напряжение. При напряжении около 200 в/см на конце струи образуется вначале небольшая, но постепенно увеличивающаяся капля, которая затем оседает вместе со струей и стекает вдоль нее. После этого струя поднимается, и процесс начинается сначала: зарождается и растет капля, оседает вместе со струей и стекает по ней. Выглядит это очень красиво — создается впечатление, что капля танцует на струе: приседает и поднимается, приседает и поднимается. В объяснении нуждаются две характеристики явления: во-первых, почему на конце струи начинает формироваться крупная приседающая капля, которая ранее, в отсутствие поля, не образовывалась, во-вторых, чем определяется частота приседаний капли?
Известно, что в отсутствие поля на конце струи формируются небольшие капли. Судьба каждой из них абсолютно независима от судьбы соседней капли. Независимо друг от друга они отрываются от струи и опадают. Если же струя находится в поле, каждая из образующихся капель поляризуется — это означает, что заряды, имеющиеся в объеме каждой капли, перераспределяются так, что у одного конца капли оказывается больше положительных зарядов, а у противоположного — больше отрицательных. Поляризованные капли уже не безучастны друг к другу, они начинают взаимно притягиваться, образуя укрупненную каплю. До достижения некоторого размера эта капля поддерживается напором струи, а затем растущая капля, давя своей тяжестью на струю, прижимает ее к стеклянному наконечнику и оседает вместе с ней. Я. И. Френкель вычислил, что две капельки, каждая из которых имеет радиус 2 мм, друг к другу притягиваются с малой силой — всего 1 дина, но ее оказывается достаточно, чтобы удержать их рядом и вынудить принять участие в формировании крупной капли.
Щеточка из водяных капель, расширяющаяся по мере роста напряженности электрического поля
А теперь о частоте приседаний или, лучше, так: о времени τ, которое проходит между двумя приседаниями. Его можно определить, рассуждая следующим образом. Растущая со временем капля будет увеличивать свой размер до тех пор, пока давление, оказываемое ею на струю ( Р к ), не станет равным давлению струи на каплю ( Р с ). Если нам известны скорость υ и сечение s струи, мы легко можем определить величины Р к и Р с . Они равны отношению соответствующих сил F к и F с к сечению струи:
Рк = F к / s и Р с = F с / s .
Очевидно, F к = тк . g ,а F с = тс . ω , где g — ускорение силы тяжести, которой подвержена капля, т с — масса струи длиной h между наконечником и каплей, а ω — ускорение или, точнее, замедление, с которым движется струя. Так как у выхода из стеклянного наконечника струя имеет скорость υ , а в месте соприкосновения с набухшей каплей ее скорость обращается в нуль, то ω ≈ υ / τ